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Abstract

Introduction: The heart and lungs are among the organs at risk of receiving
additional radiation during radiation therapy of breast cancer patients. In recent
years, artificial intelligence and machine learning have brought about significant
advancements in the field of medicine. This study aimed to predict the radiation
dose received by the heart and lungs in breast cancer patients undergoing
radiotherapy, taking into account the anatomical characteristics of these organs
through the application of machine learning techniques.

Methods: This applied study was conducted by reviewing medical records in
2023 and extracting anatomical features present in chest computed tomography
scans of 210 female patients with left breast cancer who had undergone
lumpectomy surgery. Patient data were extracted from the Picture Archiving and
Communication System, and multi-label classification algorithms were
employed to predict the radiation dose received by the heart and lungs. The
performance of the algorithms was further evaluated using metrics such as
accuracy, precision, recall, F1-Score, and Hamming loss.

Results: Based on the performance evaluation results of 7 multi-label
classification algorithms and considering 16 anatomical variables influencing
the amount of radiation received by the heart and lungs, the Random Forest (RF)
algorithm achieved the best performance among other algorithms with an
accuracy of 41.9%, precision of 73.3%, recall of 70.6%, F1 score of 73.1%, and
Hamming loss of 27.4%.

Conclusion: The use of machine learning algorithms and considering
anatomical features make it possible to identify suitable patients for 3D wedge
pair radiotherapy. More advanced techniques, such as Intensity-Modulated
Radiation Therapy or Deep Inspiration Breath Hold, can be recommended for
other patients at risk of receiving high doses of radiation to the heart and lungs.
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Introduction
Today, all types of cancers are among the
leading causes of death worldwide, with breast
cancer being the primary cause of death in
women (1). There are various treatment
methods for controlling and treating this
surgery,
hormone

disease,
radiation

such as chemotherapy,
therapy, therapy, and
targeted therapy. Radiation therapy plays an
important role in the treatment process of cancer
patients, including those with breast cancer, and
is widely performed after lumpectomy surgery
to prevent recurrence and increase the patient's
lifespan. In our country, one of the common
methods of radiation therapy is the 3D
technique, specifically using tangent fields
along with a 3D wedge pair (2, 3). In general,
the goal of radiation therapy for patients with
breast cancer is to achieve local control of the
existing tumor in the breast with minimal side
effects; for this reason, radiation therapy
requires careful and systematic planning (4).
The organs at risk during the radiotherapy of
breast cancer patients involve the heart and
lungs. The exposure of these two vital organs,
which are located in the chest area, to excessive
and abnormal radiation can lead to various
complications, such as pneumonitis, pulmonary
fibrosis, = myocardial  fibrosis,  cardiac
conduction disorders, and congestive heart
failure (2, 4). Even after many years, the
existing knowledge regarding the amount of
radiation received by various organs of the body
during radiotherapy remains inaccurate. In the
3D method, efforts are made to maximize the
radiation received by the target organ while
minimizing the radiation reaching other organs;
however, reports still indicate complications
arising from the exposure of additional
radiation to other organs during radiotherapy
(4). Given the lack of a prediction system based
on machine learning and the uncertainty
regarding the anatomical features affecting the
radiation dose received by the heart and lungs
patients during 3D
radiotherapy, this study aims to introduce the

of Dbreast cancer
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anatomical variables influencing the radiation
dose received by the heart and lungs.
Additionally, the study seeks to predict the
radiation dose received by the heart and lungs
of patients undergoing radiotherapy for breast
cancer using supervised machine learning and
multi-label classification algorithms before the
radiotherapy treatment planning process.

Materials and Methods

This applied research study reviewed all
medical records from the Gregorian calendar
year 2023 (1402 in the Iranian/Persian
calendar), examining anatomical features
identified in thoracic computed tomography
scans of 210 women diagnosed with left-sided
breast carcinoma who had undergone breast-
conserving surgery (lumpectomy). Samples
from patients referred to the radiation therapy
center entered the study with data privacy and
confidentiality. The study’s predictive features
(16 features) were measured using the
assessment tools integrated into the Picture
Archiving and Communication System (Table
1).

Four features affecting the amount of radiation
received by the heart and lungs of patients
undergoing radiation therapy were predicted by
the 16 mentioned features.

The target features (4 features) were converted
from quantitative to binary states in alignment
with scientific standards and permissible
radiation thresholds for the heart and lung
organs during radiotherapy.

Seven common machine learning algorithms,
support vector
machines, artificial neural networks, random

including decision trees,

forests,  logistic K-nearest
neighbors, and XGBoost, were employed to
predict the radiation dose received by the heart
and lungs in breast cancer patients undergoing

regression,

radiotherapy, using the specified dataset. Multi-
label classification metrics, including accuracy,
precision, recall, F1-score, and hamming loss,
were applied to assess the performance and
efficiency of these algorithms.
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Table 1: Attributes Description of the Dataset

- Attribute Data Type
1 Age Decimal
2 | Body Mass Index Decimal
3 Tumor Site Nominal
4 | Breast Width (BW) Decimal
5 Breast Thickness (BTh) Decimal
6 | Breast Length (BL) Decimal
7 | Midplane Lung Width (MLW) Decimal
8 Midplane Lung Distance (MLD) Decimal
9 | Central Lung Distance (CLD) Decimal
10 | Central Lung Length (CLL) Decimal
11 | Contralateral Lung Distance (CoLD) Decimal
12 | Contralateral Lung Maximum Distance (CoLM) Decimal
13 | Minimum Breast Distance (MBD) Decimal
14 | Breast-to-Breast Distance (BBD) Decimal
15 | Maximum Heart Distance (MHD) Decimal
16 | Maximum Heart Length (MHL) Decimal
17 | Target 1 = Vy (Lung) Nominal
18 | Target2 =D pean (Lung) Nominal
19 | Target 3 = V3o (Heart) Nominal
20 | Target4 =D pean (Heart) Nominal

Results
The mean age of 210 patients with breast cancer

the seven algorithms, after performing cross-
validation using the K-Fold method (K=10), are
after surgery used for this study was shown in Table 2, based on the performance
47.90£10.11 years. The results of implementing evaluation criteria for classification issues.

Table 2: Best Evaluation Results of Each Algorithm (10-Fold Cross-validation)

- Algorithm Accuracy | Precision | Recall | Fl-score | Hamming Loss

1 Decision Tree (DT) 39.1% 72.7% 72.7% 69.7% 28.8%

2 Logistic Regression (LR) 33.3% 72.6% 69.2% 70.3% 28.3%

3 Random Forest (RF) 41.9% 73.3% 70.6% 71.3% 27.4%

4 | Attificial Neural Network (ANN) 34.4% 69.3% 68.3% 67.7% 31.3%

5 | Support Vector Machine (SVM) 19.3% 64% 63.5% 61.1% 37.4%

6 | Extreme Gradient Boosting (XGB) | 39.5% 71.1% 69.8% 69.9% 29%

7 K-Nearest Neighbor (KNN) 33.6% 67.2% 72.2% 69% 31.4%

Discussion among other algorithms. The body mass index

Kamizaki et al. compared the performance of 4
algorithms for predicting the radiation dose
received by the heart during radiotherapy using
data from 577 breast cancer patients. They
concluded that the side of the affected breast
(left or right) had a high correlation with the
amount of radiation received by the heart. The
DNN algorithm also had the best performance
among the other three algorithms (5). Likewise,
Al-Hammad et al. compared the results of
implementing 11 algorithms to predict the
average radiation dose reaching the heart of
patients with left breast cancer using 207 female
patients with left breast cancer. In this study, the
DNN algorithm had the best performance

of the patients had a moderate correlation with
the mean heart dose (6). In the present study,
using more comprehensive anatomical features,
lung radiation was predicted with a multi-label
classification approach in addition to predicting
heart radiation. The best performance was
related to the RF algorithm, with an accuracy of
41.9%, precision of 73.3%, recall of 70.6%, F1
score of 71.3%, and Hamming loss of 27.4%.

Saadatmand et al. also conducted a study using
52 patients with breast cancer to predict skin
toxicity in breast cancer patients after
radiotherapy using 7 machine learning
algorithms. The Extra Trees algorithm achieved
the best performance with an accuracy of 70%,
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precision of 74%, and recall of 72% (7). In the
present study, considering the anatomical
variables, the focus was on predicting the
radiation received by the heart and lungs of
patients with breast cancer. The RF algorithm
achieved the best performance with an accuracy
of 41.9%, a precision of 73.3%, and a recall of
70.6%.

Mette et al. also emphasized in their study that
the heart and lungs were two vital organs during
radiation therapy for breast cancer patients.
They concluded that it is essential to provide a
treatment plan specific to each patient, taking
into account the characteristics of the patient's
needs (8). In the present study, the algorithm of
machine learning could identify appropriate
patients to perform the 3D wedge pair radiation
therapy before the treatment planning by
physicians and medical physics staff.
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2. Artificial Intelligence

3. Deep Neural Network (DNN)
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