Write your message
Volume 17, Issue 3 (Iranian Journal of Breast Diseases 2024)                   ijbd 2024, 17(3): 55-81 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasannejad F, Fazilat A, Majidzadeh K. Liquid Biopsy and its significance on the Early Detection of Breast Cancer. ijbd 2024; 17 (3) :55-81
URL: http://ijbd.ir/article-1-1105-en.html
1- Department of Genetics, Breast Cancer Research Center, ACECR, Motamed Cancer Institute, Tehran, Iran
2- Department of Genetics, Breast Cancer Research Center, ACECR, Motamed Cancer Institute, Tehran, Iran , ahmadfazilat87@gmail.com
Abstract:   (205 Views)
Introduction: Liquid biopsy is a novel diagnostic tool that investigates biological biomarkers within the blood and other body liquids in order to provide information about the genetics of the tumor and its treatment response. The current review study aimed to highlight the role of liquid biopsy in breast cancer and precision medicine.
Methods: In the current review study, we attempted to evaluate the recent innovations in breast cancer diagnosis by investigating liquid biopsy biomarkers in related databases, including Scopus, Web of Science, PubMed, and Google Scholar, from 2018 to 2024.
Results: The assessment of the published articles in this field revealed that the applications of biomarkers in liquid biopsy have a significant role in personalized medicines, highlighting their reliability for use in personalized medicine.  
Conclusion: The liquid biopsy biomarkers seem to be a promising approach in breast cancer early detection and remarkable reduction of mortality caused by this disease in the near future.
Full-Text [PDF 1053 kb]   (77 Downloads)    
Type of Study: review | Subject: Diagnosis, treatment, rehabilitation
Received: 2024/03/22 | Accepted: 2024/07/26 | Published: 2024/10/6

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209-49. [DOI:10.3322/caac.21660]
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424. [DOI:10.3322/caac.21492]
3. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, et al. Early detection of cancer. Science. 2022;375(6586):eaay9040. [DOI:10.1126/science.aay9040]
4. Chen D, Xu T, Wang S, Chang H, Yu T, Zhu Y, Chen J. Liquid biopsy applications in the clinic. Molecular Diagnosis & Therapy. 2020;24:125-32. https://doi.org/10.1007/s40291-020-00449-8 [DOI:10.1007/s40291-019-00444-8]
5. Gerratana L, Davis AA, Polano M, Zhang Q, Shah AN, Lin C, et al. Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. European Journal of Cancer. 2021;143:147-57. [DOI:10.1016/j.ejca.2020.11.005]
6. Allahqoli L, Mazidimoradi A, Momenimovahed Z, Rahmani A, Hakimi S, Tiznobaik A, et al. The Global Incidence, Mortality, and Burden of Breast Cancer in 2019: Correlation With Smoking, Drinking, and Drug Use. Front Oncol. 2022;12:921015. [DOI:10.3389/fonc.2022.921015]
7. Shah SC, Kayamba V, Peek Jr RM, Heimburger D. Cancer control in low-and middle-income countries: is it time to consider screening? Journal of global oncology. 2019;5:1-8. [DOI:10.1200/JGO.18.00200]
8. Pramesh C, Badwe RA, Bhoo-Pathy N, Booth CM, Chinnaswamy G, Dare AJ, et al. Priorities for cancer research in low-and middle-income countries: a global perspective. Nature medicine. 2022;28(4): 649-57. [DOI:10.1038/s41591-022-01738-x]
9. Arnold M, Rutherford MJ, Bardot A, Ferlay J, Andersson TM, Myklebust TÅ, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-based study. The Lancet Oncology. 2019;20(11):1493-505. [DOI:10.1016/S1470-2045(19)30456-5]
10. Connal S, Cameron JM, Sala A, Brennan PM, Palmer DS, Palmer JD, et al. Liquid biopsies: the future of cancer early detection. Journal of translational medicine. 2023;21(1):118. [DOI:10.1186/s12967-023-03960-8]
11. Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Annals of Oncology. 2021;32(9):1167-77. [DOI:10.1016/j.annonc.2021.05.806]
12. Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, et al. Circulating tumor DNA as an early cancer detection tool. Pharmacology & therapeutics. 2020;207:107458. [DOI:10.1016/j.pharmthera.2019.107458]
13. Mohammadi M, Fazilat A, Mamalo AS, Ojarudi M, Hemmati-Dinarvand M, Beilankouhi EAV, Valilo M. Correlation of PTEN signaling pathway and miRNA in breast cancer. Mol Biol Rep. 2024;51(1): 221. [DOI:10.1007/s11033-023-09191-w]
14. Fazilat A, Rashid N, Nigam A, Anjum S, Gupta N, Wajid S. Differential Expression of MARK4 Protein and Related Perturbations in Females with Ovulatory PCOS. Endocr Metab Immune Disord Drug Targets. 2019;19(7):1064-74. [DOI:10.2174/1871530319666190719145823]
15. De Rubis G, Krishnan SR, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends in pharmacological sciences. 2019;40(3):172-86. [DOI:10.1016/j.tips.2019.01.006]
16. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Human genomics. 2019;13:1-10. [DOI:10.1186/s40246-019-0220-8]
17. IJzerman MJ, de Boer J, Azad A, Degeling K, Geoghegan J, Hewitt C, et al. Towards routine implementation of liquid biopsies in cancer management: it is always too early, until suddenly it is too late. Diagnostics. 2021;11(1):103. [DOI:10.3390/diagnostics11010103]
18. Wu T-M, Liu J-B, Liu Y, Shi Y, Li W, Wang G-R, et al. Power and promise of next-generation sequencing in liquid biopsies and cancer control. Cancer Control. 2020;27(3):1073274820934805. [DOI:10.1177/1073274820934805]
19. Galizia D, Milani A, Geuna E, Martinello R, Cagnazzo C, Foresto M, et al. Self-evaluation of duration of adjuvant chemotherapy side effects in breast cancer patients: A prospective study. Cancer Med. 2018;7(9):4339-44. [DOI:10.1002/cam4.1687]
20. Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, et al. Noninvasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel). 2020;12(10). [DOI:10.3390/cancers12102767]
21. Wang L. Early Diagnosis of Breast Cancer. Sensors (Basel). 2017;17(7). [DOI:10.3390/s17071572]
22. Zubor P, Kubatka P, Kajo K, Dankova Z, Polacek H, Bielik T, et al. Why the gold standard approach by mammography demands extension by multiomics? Application of liquid biopsy miRNA profiles to breast cancer disease management. International Journal of Molecular Sciences. 2019;20(12):2878. [DOI:10.3390/ijms20122878]
23. Tay TKY, Tan PH. Liquid biopsy in breast cancer: a focused review. Archives of Pathology & Laboratory Medicine. 2021; 145(6):678-86. [DOI:10.5858/arpa.2019-0559-RA]
24. Hasannejad F, Montazeri L, Mano JF, Bonakdar S. Regulation of cell fate by cell imprinting approach in vitro. BioImpacts: BI. 2024;14(3) 29945. [DOI:10.34172/bi.2023.29945]
25. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-30. [DOI:10.1126/science.aar3247]
26. Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther. 2020;24(2): 215-32. [DOI:10.1007/s40291-020-00453-y]
27. Jakabova A, Bielcikova Z, Pospisilova E, Petruzelka L, Blasiak P, Bobek V, Kolostova K. Characterization of circulating tumor cells in early breast cancer patients receiving neoadjuvant chemotherapy. Ther Adv Med Oncol. 2021; 13:17588359211028492. [DOI:10.1177/17588359211028492]
28. Zhong G, Wang K, Li J, Xiao S, Wei W, Liu J. Determination of Serum Exosomal H19 as a Noninvasive Biomarker for Breast Cancer Diagnosis. Onco Targets Ther. 2020;13:2563-71. [DOI:10.2147/OTT.S243601]
29. Sheikhnia F, Fazilat A, Rashidi V, Azizzadeh B, Mohammadi M, Maghsoudi H, Majidinia M. Exploring the Therapeutic Potential of Quercetin in Cancer Treatment: Targeting Long Non-Coding RNAs. Pathology- Research and Practice. 2024: 155374. [DOI:10.1016/j.prp.2024.155374]
30. Chanteloup G, Cordonnier M, Isambert N, Bertaut A, Hervieu A, Hennequin A, et al. Monitoring HSP70 exosomes in cancer patients' follow up: a clinical prospective pilot study. J Extracell Vesicles. 2020;9(1): 1766192. [DOI:10.1080/20013078.2020.1766192]
31. Zidi O, Souai N, Raies H, Ben Ayed F, Mezlini A, Mezrioui S, et al. Fecal Metabolic Profiling of Breast Cancer Patients during Neoadjuvant Chemotherapy Reveals Potential Biomarkers. Molecules. 2021;26(8). 2266. [DOI:10.3390/molecules26082266]
32. Darga EP, Dolce EM, Fang F, Kidwell KM, Gersch CL, Kregel S, et al. PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS One. 2021;16(11):e0260124. [DOI:10.1371/journal.pone.0260124]
33. López-Jornet P, Aznar C, Ceron J, Asta T. Salivary biomarkers in breast cancer: a cross-sectional study. Supportive Care in Cancer. 2021;29(2):889-96. https://doi.org/10.1007/s00520-020-05561-3 [DOI:10.1007/s00520-020-05851-w]
34. Kure S, Satoi S, Kitayama T, Nagase Y, Nakano N, Yamada M, et al. A prediction model using 2-propanol and 2-butanone in urine distinguishes breast cancer. Sci Rep. 2021;11(1):19801. [DOI:10.1038/s41598-021-99396-5]
35. Kamel AM, Teama S, Fawzy A, El Deftar M. Plasma DNA integrity index as a potential molecular diagnostic marker for breast cancer. Tumor Biology. 2016;37: 7565-72. [DOI:10.1007/s13277-015-4624-3]
36. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human molecular genetics. 2012;21(R1):R125-R34. [DOI:10.1093/hmg/dds317]
37. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-30. [DOI:10.1126/science.aar3247]
38. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clinical cancer research. 2014;20(10): 2643-50. [DOI:10.1158/1078-0432.CCR-13-2933]
39. Kruspe S, Dickey DD, Urak KT, Blanco GN, Miller MJ, Clark KC, et al. Rapid and sensitive detection of breast cancer cells in patient blood with nuclease-activated probe technology. Molecular Therapy-Nucleic Acids. 2017;8:542-57. [DOI:10.1016/j.omtn.2017.08.004]
40. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer science. 2016;107(3):326-34. [DOI:10.1111/cas.12880]
41. Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S, et al. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative noninvasive biomarker. BMC cancer. 2015;15:1-9. [DOI:10.1186/s12885-015-1190-4]
42. Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary exosomal microRNAs as potential noninvasive biomarkers in breast cancer detection. Molecular diagnosis & therapy. 2020;24:215-32. [DOI:10.1007/s40291-020-00453-y]
43. Souza KC, Evangelista AF, Leal LF, Souza CP, Vieira RA, Causin RL, et al. Identification of cell-free circulating microRNAs for the detection of early breast cancer and molecular subtyping. Journal of Oncology. 2019;2019. [DOI:10.1155/2019/8393769]
44. Zhong G, Wang K, Li J, Xiao S, Wei W, Liu J. Determination of serum exosomal H19 as a noninvasive biomarker for breast cancer diagnosis. OncoTargets and therapy. 2020:2563-71. [DOI:10.2147/OTT.S243601]
45. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, et al. Exosomal long non-coding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Molecular cancer. 2018;17(1):1-5. [DOI:10.1186/s12943-018-0817-x]
46. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer cell. 2015;28(5):666-76. [DOI:10.1016/j.ccell.2015.09.018]
47. Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the noninvasive detection of breast cancer. PloS one. 2010;5(12):e15573. [DOI:10.1371/journal.pone.0015573]
48. López-Jornet P, Aznar C, Ceron J, Asta T. Salivary biomarkers in breast cancer: a cross-sectional study. Supportive Care in Cancer. 2021;29:889-96. https://doi.org/10.1007/s00520-020-05561-3 [DOI:10.1007/s00520-020-05851-w]
49. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer. 2005; 5(11):845-56. [DOI:10.1038/nrc1739]
50. Garrido-Cano I, Constâncio V, Adam-Artigues A, Lameirinhas A, Simón S, Ortega B, et al. Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer. Int J Mol Sci. 2020;21(19). [DOI:10.3390/ijms21197427]
51. Swellam M, Zahran RFK, Abo El-Sadat Taha H, El-Khazragy N, Abdel-Malak C. Role of some circulating MiRNAs on breast cancer diagnosis. Arch Physiol Biochem. 2019;125(5):456-64. [DOI:10.1080/13813455.2018.1482355]
52. Kim J, Park S, Hwang D, Kim SI, Lee H. Diagnostic Value of Circulating miR-202 in Early-Stage Breast Cancer in South Korea. Medicina (Kaunas). 2020;56(7)340. [DOI:10.3390/medicina56070340]
53. Adam-Artigues A, Garrido-Cano I, Simón S, Ortega B, Moragón S, Lameirinhas A, et al. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open. 2021;6(1):100039. [DOI:10.1016/j.esmoop.2020.100039]
54. Swellam M, El Magdoub HM, Hassan NM, Hefny MM, Sobeih ME. Potential diagnostic role of circulating MiRNAs in breast cancer: Implications on clinicopathological characters. Clin Biochem. 2018;56:47-54. [DOI:10.1016/j.clinbiochem.2018.04.013]
55. Swellam M, Zahran RFK, Ghonem SA, Abdel-Malak C. Serum MiRNA-27a as potential diagnostic nucleic marker for breast cancer. Arch Physiol Biochem. 2021;127(1):90-6. [DOI:10.1080/13813455.2019.1616765]
56. Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum microRNA-99a relative expression as a diagnostic and prognostic noninvasive biomarker of breast cancer in Egyptian females. Gene Reports. 2020;19:100593. [DOI:10.1016/j.genrep.2020.100593]
57. Diansyah MN, Prayogo AA, Sedana MP, Savitri M, Zaky Romadhon P, Niken Ayu Amrita P, et al. Early detection breast cancer: role of circulating plasma miRNA-21 expression as a potential screening biomarker. Turk J Med Sci. 2021;51(2): 562-9. [DOI:10.3906/sag-2005-138]
58. Souza KCB, Evangelista AF, Leal LF, Souza CP, Vieira RA, Causin RL, et al. Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular Subtyping. J Oncol. 2019;2019:8393769. [DOI:10.1155/2019/8393769]
59. Canatan D, Sönmez Y, Yılmaz Ö, Çim A, Coşkun H, Sezgin Göksu S, et al. MicroRNAs as biomarkers for breast cancer. Acta Biomed. 2021;92(2): e2021028.
60. El-Fattah AAA, Sadik NAH, Shaker OG, Mohamed Kamal A, Shahin NN. Serum Long Non-Coding RNAs PVT1, HOTAIR, and NEAT1 as Potential Biomarkers in Egyptian Women with Breast Cancer. Biomolecules. 2021;11(2)301. [DOI:10.3390/biom11020301]
61. Elhelbawy NG, Zaid IF, Khalifa AA, Gohar SF, Fouda EA. miRNA-148a and miRNA-30c expressions as potential biomarkers in breast cancer patients. Biochem Biophys Rep. 2021;27:101060. [DOI:10.1016/j.bbrep.2021.101060]
62. Mahmoud MM, Sanad EF, Elshimy RAA, Hamdy NM. Competitive Endogenous Role of the LINC00511/miR-185-3p Axis and miR-301a-3p From Liquid Biopsy as Molecular Markers for Breast Cancer Diagnosis. Front Oncol. 2021;11:749753. [DOI:10.3389/fonc.2021.749753]
63. Majumder M, Ugwuagbo KC, Maiti S, Lala PK, Brackstone M. Pri-miR526b and Pri-miR655 Are Potential Blood Biomarkers for Breast Cancer. Cancers (Basel). 2021;13(15)3838. [DOI:10.3390/cancers13153838]
64. Mohamed AA, Allam AE, Aref AM, Mahmoud MO, Eldesoky NA, Fawazy N, et al. Evaluation of Expressed MicroRNAs as Prospective Biomarkers for Detection of Breast Cancer. Diagnostics (Basel). 2022;12(4)789. [DOI:10.3390/diagnostics12040789]
65. Ali M, El Gayar D, Hany N, Ezzat AH, Zeyada R. MicroRNA 21 and microRNA 10b: early diagnostic biomarkers of breast cancer in Egyptian females. J Egypt Natl Canc Inst. 2022;34(1):16. [DOI:10.1186/s43046-022-00115-6]
66. Ameli-Mojarad M, Ameli-Mojarad M, Nourbakhsh M, Nazemalhosseini-Mojarad E. Circular RNA hsa_circ_0005046 and hsa_circ_0001791 May Become Diagnostic Biomarkers for Breast Cancer Early Detection. J Oncol. 2021;2021:2303946. [DOI:10.1155/2021/2303946]
67. Bakr NM, Mahmoud MS, Nabil R, Boushnak H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol. 2021;19(1):84. [DOI:10.1186/s43141-021-00174-7]
68. Liu D, Li B, Shi X, Zhang J, Chen AM, Xu J, et al. Cross-platform genomic identification and clinical validation of breast cancer diagnostic biomarkers. Aging (Albany NY). 2021;13(3):4258-73. [DOI:10.18632/aging.202388]
69. Li X, Zou W, Wang Y, Liao Z, Li L, Zhai Y, et al. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol Genet Genomic Med. 2020;8(5):e1092. [DOI:10.1002/mgg3.1092]
70. Li M, Zou X, Xia T, Wang T, Liu P, Zhou X, et al. A five-miRNA panel in plasma was identified for breast cancer diagnosis. Cancer Med. 2019;8(16):7006-17. [DOI:10.1002/cam4.2572]
71. Fang R, Zhu Y, Hu L, Khadka VS, Ai J, Zou H, et al. Plasma MicroRNA Pair Panels as Novel Biomarkers for Detection of Early Stage Breast Cancer. Front Physiol. 2018;9:1879. [DOI:10.3389/fphys.2018.01879]
72. Raheem AR, Abdul-Rasheed OF, Al-Naqqash MA. The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. Saudi Med J. 2019;40(12):1218-26. [DOI:10.15537/smj.2019.12.24712]
73. Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2021;14(2):31. [DOI:10.3892/mco.2020.2193]
74. Adam-Artigues A, Garrido-Cano I, Carbonell-Asins JA, Lameirinhas A, Simón S, Ortega-Morillo B, et al. Identification of a Two-MicroRNA Signature in Plasma as a Novel Biomarker for Very Early Diagnosis of Breast Cancer. Cancers (Basel). 2021;13(11). [DOI:10.3390/cancers13112848]
75. Itani MM, Nassar FJ, Tfayli AH, Talhouk RS, Chamandi GK, Itani ARS, et al. A Signature of Four Circulating microRNAs as Potential Biomarkers for Diagnosing Early-Stage Breast Cancer. Int J Mol Sci. 2021;22(11). [DOI:10.3390/ijms22116121]
76. Jang JY, Ko EY, Jung JS, Kang KN, Kim YS, Kim CW. Evaluation of the Value of Multiplex MicroRNA Analysis as a Breast Cancer Screening in Korean Women under 50 Years of Age with a High Proportion of Dense Breasts. J Cancer Prev. 2021;26(4):258-65. [DOI:10.15430/JCP.2021.26.4.258]
77. Lopes BC, Braga CZ, Ventura FV, de Oliveira JG, Kato-Junior EM, Bordin-Junior NA, Zuccari D. miR-210 and miR-152 as Biomarkers by Liquid Biopsy in Invasive Ductal Carcinoma. J Pers Med. 2021;11(1). [DOI:10.3390/jpm11010031]
78. Sadeghi H, Kamal A, Ahmadi M, Najafi H, Sharifi Zarchi A, Haddad P, et al. A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA Biol. 2021;18(sup2):747-56. [DOI:10.1080/15476286.2021.1989218]
79. Yu Y, Zheng W, Ji C, Wang X, Chen M, Hua K, et al. Tumor-Derived circRNAs as Circulating Biomarkers for Breast Cancer. Front Pharmacol. 2022;13:811856. [DOI:10.3389/fphar.2022.811856]
80. Zhang K, Wang YY, Xu Y, Zhang L, Zhu J, Si PC, et al. A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathol Res Pract. 2021;222:153458. [DOI:10.1016/j.prp.2021.153458]
81. Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett. 2024;27(4):181. [DOI:10.3892/ol.2024.14314]
82. Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol. 2021;19(1):54. [DOI:10.1186/s43141-021-00154-x]
83. Liu C, Sun B, Xu B, Meng X, Li L, Cong Y, et al. A panel containing PD-1, IL-2Rα, IL-10, and CA15-3 as a biomarker to discriminate breast cancer from benign breast disease. Cancer Manag Res. 2018;10:1749-61. [DOI:10.2147/CMAR.S160452]
84. Salta S, S PN, Fontes-Sousa M, Lopes P, Freitas M, Caldas M, et al. A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA. J Clin Med. 2018;7(11)420. [DOI:10.3390/jcm7110420]
85. Murillo Carrasco A, Acosta O, Ponce J, Cotrina J, Aguilar A, Araujo J, et al. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. J Clin Lab Anal. 2021;35(4):e23720. [DOI:10.1002/jcla.23720]
86. Liu J, Zhao H, Huang Y, Xu S, Zhou Y, Zhang W, et al. Genome-wide cell-free DNA methylation analyses improve accuracy of noninvasive diagnostic imaging for early-stage breast cancer. Mol Cancer. 2021;20(1):36. https://doi.org/10.1186/s12943-021-01493-6 [DOI:10.1186/s12943-021-01330-w]
87. Elhelaly R, Effat N, Hegazy MAE, Abdelwahab K, Hamdy O, Abo Hashem EM, Elzehery RR. Circulating Cell Free DNA and DNA Integrity Index as Discriminating Tools between Breast Cancer and Benign Breast Disease. Asian Pac J Cancer Prev. 2022;23(2):545-52. [DOI:10.31557/APJCP.2022.23.2.545]
88. Han BW, Cai GX, Liu Q, Yang X, Guo ZW, Huang LM, et al. Noninvasive discrimination of benign and malignant breast lesions using genome-wide nucleosome profiles of plasma cell-free DNA. Clin Chim Acta. 2021;520:95-100. [DOI:10.1016/j.cca.2021.06.008]
89. Zhang X, Zhao W, Wei W, You Z, Ou X, Sun M, et al. Parallel Analyses of Somatic Mutations in Plasma Circulating Tumor DNA (ctDNA) and Matched Tumor Tissues in Early-Stage Breast Cancer. Clin Cancer Res. 2019;25(21):6546-53. [DOI:10.1158/1078-0432.CCR-18-4055]
90. Bortul M, Giudici F, Tierno D, Generali D, Scomersi S, Grassi G, et al. A Case-Control Study by ddPCR of ALU 260/111 and LINE-1 266/97 Copy Number Ratio in Circulating Cell-Free DNA in Plasma Revealed LINE-1 266/97 as a Potential Biomarker for Early Breast Cancer Detection. Int J Mol Sci. 2023;24(10)8520. [DOI:10.3390/ijms24108520]
91. Stergiopoulou D, Markou A, Strati A, Zavridou M, Tzanikou E, Mastoraki S, et al. Comprehensive liquid biopsy analysis as a tool for the early detection of minimal residual disease in breast cancer. Scientific Reports. 2023;13(1):1258. [DOI:10.1038/s41598-022-25400-1]
92. Cani AK, Dolce EM, Darga EP, Hu K, Liu CJ, Pierce J, et al. Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/HER2-negative advanced breast cancer: feasibility of precision oncology biomarker detection. Mol Oncol. 2022;16(10):1969-85. [DOI:10.1002/1878-0261.13150]
93. Wu Q, Zheng H, Gu J, Cheng Y, Qiao B, Wang J, et al. Detection of folate receptor-positive circulating tumor cells as a biomarker for diagnosis, prognostication, and therapeutic monitoring in breast cancer. J Clin Lab Anal. 2022;36(1): e24180. [DOI:10.1002/jcla.24180]
94. Cani AK, Hayes DF. Breast Cancer Circulating Tumor Cells: Current Clinical Applications and Future Prospects. Clinical Chemistry. 2024;70(1):68-80. [DOI:10.1093/clinchem/hvad191]
95. Shi W, Jin X, Wang Y, Zhang Q, Yang L. High serum exosomal long non-coding RNA DANCR expression confers poor prognosis in patients with breast cancer. J Clin Lab Anal. 2022;36(3):e24186. [DOI:10.1002/jcla.24186]
96. Wang B, Mao JH, Wang BY, Wang LX, Wen HY, Xu LJ, et al. Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 2020;489:87-99. [DOI:10.1016/j.canlet.2020.05.038]
97. Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, et al. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel). 2023;15(6)1640. [DOI:10.3390/cancers15061640]
98. Wang M, Wang Y, Tian X, Wang Q, Huang H, Lu X, et al. Diagnostic and predictive value of liquid biopsy-derived exosome miR-21 for breast cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn. 2023;23(4):315-24. [DOI:10.1080/14737159.2023.2195552]
99. Yoshikawa M, Iinuma H, Umemoto Y, Yanagisawa T, Matsumoto A, Jinno H. Exosome-encapsulated microRNA-223-3p as a minimally invasive biomarker for the early detection of invasive breast cancer. Oncol Lett. 2018;15(6):9584-92. [DOI:10.3892/ol.2018.8457]
100. Ozawa PMM, Vieira E, Lemos DS, Souza ILM, Zanata SM, Pankievicz VC, et al. Identification of miRNAs Enriched in Extracellular Vesicles Derived from Serum Samples of Breast Cancer Patients. Biomolecules. 2020;10(1)150. [DOI:10.3390/biom10010150]
101. Liu M, Mo F, Song X, He Y, Yuan Y, Yan J, et al. Exosomal hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PeerJ. 2021;9:e12147. [DOI:10.7717/peerj.12147]
102. Kim MW, Park S, Lee H, Gwak H, Hyun KA, Kim JY, et al. Multi-miRNA panel of tumor-derived extracellular vesicles as promising diagnostic biomarkers of early-stage breast cancer. Cancer Sci. 2021;112(12):5078-87. [DOI:10.1111/cas.15155]
103. Alharthi SD, Kanniyappan H, Prithweeraj S, Bijukumar D, Mathew MT. Proteomic-based electrochemical noninvasive biosensor for early breast cancer diagnosis. Int J Biol Macromol. 2023;253(Pt 4):126681. [DOI:10.1016/j.ijbiomac.2023.126681]
104. Ryu JM, Kang D, Cho J, Lee JE, Kim SW, Nam SJ, et al. Prognostic Impact of Elevation of Cancer Antigen 15-3 (CA15-3) in Patients With Early Breast Cancer With Normal Serum CA15-3 Level. J Breast Cancer. 2023;26(2):126-35. [DOI:10.4048/jbc.2023.26.e17]
105. Fredolini C, Pathak KV, Paris L, Chapple KM, Tsantilas KA, Rosenow M, et al. Shotgun proteomics coupled to nanoparticle-based biomarker enrichment reveals a novel panel of extracellular matrix proteins as candidate serum protein biomarkers for early-stage breast cancer detection. Breast Cancer Res. 2020;22(1): 135. [DOI:10.1186/s13058-020-01373-9]
106. Zografos E, Anagnostopoulos AK, Papadopoulou A, Legaki E, Zagouri F, Marinos E, et al. Serum Proteomic Signatures of Male Breast Cancer. Cancer Genomics Proteomics. 2019;16(2):129-37. [DOI:10.21873/cgp.20118]
107. Giri K, Mehta A, Ambatipudi K. In search of the altering salivary proteome in metastatic breast and ovarian cancers. FASEB Bioadv. 2019;1(3):191-207. [DOI:10.1096/fba.2018-00029]
108. Bartkowiak K, Heidrich I, Kwiatkowski M, Banys-Paluchowski M, Andreas A, Wurlitzer M, et al. Circulating Cellular Communication Network Factor 1 Protein as a Sensitive Liquid Biopsy Marker for Early Detection of Breast Cancer. Clin Chem. 2022;68(2):344-53. [DOI:10.1093/clinchem/hvab153]
109. Griñán‐Lisón C, Olivares‐Urbano MA, Jiménez G, López‐Ruiz E, Del Val C, Morata‐Tarifa C, et al. miRNAs as radio‐response biomarkers for breast cancer stem cells. Molecular oncology. 2020;14(3):556-70. [DOI:10.1002/1878-0261.12635]
110. Xiao R, Liu C, Zhang B, Ma L. Tumor-educated platelets as a promising biomarker for blood-based detection of renal cell carcinoma. Frontiers in Oncology. 2022;12:844520. [DOI:10.3389/fonc.2022.844520]
111. Fazilat A, Didla SR, Chakravarty M, Wajid S. Molecular Characterization of Insulin Gene in Diabetic Foot Ulcer Patients: A Pilot Study from Bengal Bay Coastal Origin. Indian Journal of Science and Technology. 2016;9:48. [DOI:10.17485/ijst/2016/v9i48/102205]
112. Salvador-Coloma C, Santaballa A, Sanmartín E, Calvo D, García A, Hervás D, et al. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. European Journal of Cancer. 2020;139:119-34. [DOI:10.1016/j.ejca.2020.08.020]
113. GJG S, Wurdinger T. Tumor-educated platelets. Blood. 2019;133(22):2359-64. [DOI:10.1182/blood-2018-12-852830]
114. Sol N, GJG S, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, et al. Tumor-educated platelet RNA for the detection and (pseudo) progression monitoring of glioblastoma. Cell Reports Medicine. 2020;1(7)10101. [DOI:10.1016/j.xcrm.2020.100101]
115. Ergin S, Kherad N, Alagoz M. RNA sequencing and its applications in cancer and rare diseases. Molecular Biology Reports. 2022:1-9. [DOI:10.1007/s11033-021-06963-0]
116. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer. 2017;17(4):223-38. [DOI:10.1038/nrc.2017.7]
117. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38. [DOI:10.1038/npp.2012.112]
118. Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing analysis. Epigenetics protocols. 2011:11-21. [DOI:10.1007/978-1-61779-316-5_2]
119. Chin YM, Shibayama T, Chan HT, Otaki M, Hara F, Kobayashi T, et al. Serial circulating tumor DNA monitoring of CDK4/6 inhibitors response in metastatic breast cancer. Cancer Science. 2022; 113(5):1808-20. [DOI:10.1111/cas.15304]
120. Wang Y, Lin L, Li L, Wen J, Chi Y, Hao R, et al. Genetic landscape of breast cancer and mutation tracking with circulating tumor DNA in Chinese women. Aging (Albany NY). 2021;13(8):11860. [DOI:10.18632/aging.202888]
121. Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease-latest advances and implications for cure. Nature Reviews Clinical Oncology. 2019;16(7):409-24. [DOI:10.1038/s41571-019-0187-3]
122. Gerratana L, Davis AA, Zhang Q, Basile D, Rossi G, Strickland K, et al. Longitudinal dynamics of circulating tumor cells and circulating tumor DNA for treatment monitoring in metastatic breast cancer. JCO Precision Oncology. 2021;5: 943-52. [DOI:10.1200/PO.20.00345]
123. Yan Y-y, Guo Q-r, Wang F-h, Adhikari R, Zhu Z-y, Zhang H-y, et al. Cell-free DNA: hope and potential application in cancer. Frontiers in cell and developmental biology. 2021;9:639233. [DOI:10.3389/fcell.2021.639233]
124. Adashek JJ, Janku F, Kurzrock R. Signed in blood: circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers. 2021;13(14):3600. [DOI:10.3390/cancers13143600]
125. Singer BD. A practical guide to the measurement and analysis of DNA methylation. American journal of respiratory cell and molecular biology. 2019;61(4):417-28. [DOI:10.1165/rcmb.2019-0150TR]
126. Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, et al. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. British journal of cancer. 2022;126(3):331-50. [DOI:10.1038/s41416-021-01610-8]
127. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. [DOI:10.3390/cells8070727]
128. Fazilat A, Didla SR, Chitti S, Joshi M. Evaluation of Genetic Damage in Tobacco Chewing Population by In-vitro SCE Assay: a Review from Coastal Andhra Population. Indian Journal of Science and Technology. 2015;8(12):1. [DOI:10.17485/ijst/2015/v8i12/57097]
129. Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al. Circulating tumor cells: Biology and clinical significance. Signal transduction and targeted therapy. 2021;6(1):404. [DOI:10.1038/s41392-021-00817-8]
130. Harouaka R, Kang Z, Zheng S-Y, Cao L. Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications. Pharmacology & therapeutics. 2014;141(2):209-21. [DOI:10.1016/j.pharmthera.2013.10.004]
131. Mohan S, Chemi F, Brady G. Challenges and unanswered questions for the next decade of circulating tumour cell research in lung cancer. Translational Lung Cancer Research. 2017;6(4):454. [DOI:10.21037/tlcr.2017.06.04]
132. Pierga J-Y, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Annals of oncology. 2012;23(3):618-24. [DOI:10.1093/annonc/mdr263]
133. Horimoto Y, Tokuda E, Murakami F, Uomori T, Himuro T, Nakai K, et al. Analysis of circulating tumour cell and the epithelial mesenchymal transition (EMT) status during eribulin-based treatment in 22 patients with metastatic breast cancer: a pilot study. Journal of translational medicine. 2018;16(1):1-8. [DOI:10.1186/s12967-018-1663-8]
134. Brisotto G, Biscontin E, Rossi E, Bulfoni M, Piruska A, Spazzapan S, et al. Dysmetabolic circulating tumor cells are prognostic in metastatic breast cancer. Cancers. 2020;12(4):1005. [DOI:10.3390/cancers12041005]
135. Jakabova A, Bielcikova Z, Pospisilova E, Petruzelka L, Blasiak P, Bobek V, Kolostova K. Characterization of circulating tumor cells in early breast cancer patients receiving neoadjuvant chemotherapy. Therapeutic Advances in Medical Oncology. 2021;13: 17588359211028492. [DOI:10.1177/17588359211028492]
136. Papadaki MA, Koutsopoulos AV, Tsoulfas PG, Lagoudaki E, Aggouraki D, Monastirioti A, et al. Clinical relevance of immune checkpoints on circulating tumor cells in breast cancer. Cancers. 2020;12(2): 376. [DOI:10.3390/cancers12020376]
137. Papadaki MA, Monastirioti A, Apostolopoulou CA, Aggouraki D, Papadaki C, Michaelidou K, et al. TLR4 and pSTAT3 Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Breast Cancer Patients: Prognostic Implications. Cancers. 2022;14(4):1053. [DOI:10.3390/cancers14041053]
138. Lee C-H, Hsieh JC-H, Wu TM-H, Yeh T-S, Wang H-M, Lin Y-C, et al. Baseline circulating stem-like cells predict survival in patients with metastatic breast Cancer. BMC cancer. 2019;19:1-10. [DOI:10.1186/s12885-019-6370-1]
139. Chen Z, Sun T, Yang Z, Zheng Y, Yu R, Wu X, et al. Monitoring treatment efficacy and resistance in breast cancer patients via circulating tumor DNA genomic profiling. Molecular genetics & genomic medicine. 2020;8(2):e1079. [DOI:10.1002/mgg3.1079]
140. Raimondi L, Raimondi FM, Pietranera M, Di Rocco A, Di Benedetto L, Miele E, et al. Assessment of resistance mechanisms and clinical implications in patients with KRAS mutated-metastatic breast cancer and resistance to CDK4/6 inhibitors. Cancers. 2021;13(8):1928. [DOI:10.3390/cancers13081928]
141. Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen K, Meldgaard P, Folkersen B, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Molecular oncology. 2016;10(10):1595-602. [DOI:10.1016/j.molonc.2016.10.003]
142. Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Molecular cancer. 2019;18:1-15. [DOI:10.1186/s12943-019-0985-3]
143. Landegren U, Hammond M. Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Molecular oncology. 2021; 15(6):1715-26. [DOI:10.1002/1878-0261.12809]
144. Ding Z, Wang N, Ji N, Chen Z-S. Proteomics technologies for cancer liquid biopsies. Molecular Cancer. 2022;21(1):53. [DOI:10.1186/s12943-022-01526-8]
145. Yang Y, Zhang H, Zhang M, Meng Q, Cai L, Zhang Q. Elevation of serum CEA and CA15‑3 levels during antitumor therapy predicts poor therapeutic response in advanced breast cancer patients. Oncology Letters. 2017;14(6):7549-56. [DOI:10.3892/ol.2017.7164]
146. Laessig D, Nagel D, Heinemann V, Untch M, Kahlert S, Bauerfeind I, Stieber P. Importance of CEA and CA 15-3 during disease progression in metastatic breast cancer patients. Anticancer research. 2007;27(4A):1963-8. [DOI:10.1515/JLM.2007.014]
147. Martinez-Dominguez MV, Zottel A, Šamec N, Jovčevska I, Dincer C, Kahlert UD, Nickel A-C. Current technologies for RNA-directed liquid diagnostics. Cancers. 2021;13(20):5060. [DOI:10.3390/cancers13205060]
148. Drokow EK, Sun K, Ahmed HAW, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Management and Research. 2019:4313-26. [DOI:10.2147/CMAR.S199126]
149. Shivapurkar N, Vietsch EE, Carney E, Isaacs C, Wellstein A. Circulating microRNAs in patients with hormone receptor-positive, metastatic breast cancer treated with dovitinib. Clinical and translational medicine. 2017;6(1):1-10. [DOI:10.1186/s40169-017-0169-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb