پیام خود را بنویسید

جستجو در مقالات منتشر شده


۱ نتیجه برای شبکه عصبی پرسپترون چند لایه

سیروس احمدی طوسی، حسین قیومی زاده، جواد حدادنیا،
جلد ۱۰، شماره ۴ - ( ۱۲-۱۳۹۶ )
چکیده


چکیده
مقدمه: در حال حاضر، سرطان پستان از شایع‏ترین بیماری­های زنان است. دسته ‏بندی دقیق تومور سرطان پستان نقش کلیدی را در امر تشخیص پزشکی ایفا می­کند. متخصصین به دنبال روش­های بهینه جهت بهبود تشخیص این تومور می‏ باشند.
روش بررسی: در این مطالعه شبکه عصبی مبتنی بر جغرافیای زیستی ارایه گردیده که با استفاده از آنالیز اجزای اصلی در مرحله آماده ‏سازی و بروز رسانی همزمان وزن‏ها موفق به دسته‏بندی داده ­ها به عنوان خوش‏ خیم یا بدخیم می­گردد. جهت ارزیابی الگوریتم ارایه شده از داده‏ های بانک اطلاعاتی ویسکانسین استفاده شده است.
یافته‏ ها: دقت تفکیک در حالت عادی یعنی حالتی که از آنالیز اجزای اصلی و الگوریتم بهینه سازی استفاده نشده و تنها شبکه عصبی با نسبت ۷۰-۳۰ داده‏های آموزش به تست مورد استفاده قرار گیرد، ۲/۹۷% است. با بکارگیری آنالیز اجزای اصلی و کاهش ۹ ویژگی به ۸ ویژگی دقت به ۵/۹۸ می­رسد. نهایتا با استفاده از الگوریتم بهینه سازی جغرافیای زیستی همراه با اعتبار سنجی ضربدری ۱۰ گانه دقت به ۱۰۰% رسیده که به میزان قابل توجهی از نتایج بدست آمده از مطالعات دیگر موفق ‏تر است.
نتیجه‏ گیری: استفاده از این الگوریتم می‏تواند عملکرد شبکه عصبی را بهبود دهد. مقایسه روش ارایه شده با حالت بهینه نشده و در حالتی که فقط ازPCA  و شبکه عصبی استفاده شده است، عملکرد بهینه این روش را نشان داد. نتایج حاکی از آن است که مدل ارایه شده در این مقاله دقت بسیار بالایی در تفکیک داده‏ های سرطان پستان دارا می­ باشد و می توان از آن جهت تشخیص نهایی این سرطان استفاده نمود.
 

صفحه ۱ از ۱     

تمامی حقوق نرم‌افزاری اين وب سایت متعلق به مجله علمی بیماری‌های پستان ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb