Write your message
Volume 18, Issue 3 (Iranian Journal of Breast Diseases 2025)                   ijbd 2025, 18(3): 112-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

motevali alamuti M, khalilian M, bastanfard A. Breast cancer prediction approach based on microarray data using hybrid gene selection and deep learning. ijbd 2025; 18 (3) :112-0
URL: http://ijbd.ir/article-1-1154-en.html
1- Ph.D. Candidate, Department of Computer Engineering, Ka.C, Islamic Azad University, Karaj, Iran
2- Department of Computer Engineering, Ka.C, Islamic Azad University, Karaj, Iran , Khalilian@kiau.ac.ir
3- Department of Computer Engineering, Ka.C, Islamic Azad University, Karaj, Iran
Abstract:   (253 Views)

Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer mortality. Gene expression analysis using microarray data reveals molecular patterns associated with disease progression, aiding in diagnosis and treatment. However, the high dimensionality of such data poses significant challenges for machine learning methods.
Methods: Breast cancer is the most common malignancy in women and a major cause of cancer mortality. This study introduces a hybrid feature selection method combining filter, wrapper, FWGPC, and deep learning to handle high-dimensional microarray data. The approach enhances classification accuracy and identifies key genes linked to breast cancer.
Results: Experimental results demonstrate that the proposed method achieves classification accuracies of 99.96% and 96.1% on the BC-TCGA and GSE datasets, respectively. It outperforms many other classification approaches in identifying new breast cancer cases.
Conclusion: This study applies the FWGPC algorithm by combining filter and wrapper approaches for feature selection in breast cancer microarray data. The best outcomes compete, and classification accuracy is evaluated through deep learning. The approach enables key gene identification and improves classification performance.

Full-Text [PDF 2305 kb]   (63 Downloads)    
Type of Study: Applicable | Subject: prevention
Received: 2024/11/11 | Accepted: 2025/09/3 | Published: 2025/10/2

References
1. [1] Bissanum R, Chaichulee S, Kamolphiwong R, Navakanitworakul R, Kanokwiroon K. Molecular Classification Models for Triple Negative Breast Cancer Subtype Using Machine Learning. J Pers Med. 2021 Sep 1;11(9):881. doi: 10.3390/jpm11090881. [DOI:10.3390/jpm11090881] [PMID] []
2. [2] M. Sugimoto, S. Hikichi, M. Takada, M. Toi. Machine learning techniques for breast cancer diagnosis and treatment: a narrative review, Annals of Breast Surgery. 2023; 7:1-13. doi:10.21037/abs-21-63. [DOI:10.21037/abs-21-63]
3. [3] Abhisheka, B, Biswas, S.K. & Purkayastha, B. A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning. Arch Computat Methods Eng. 2023;30: 5023-5052. doi:10.1007/s11831-023-09968-z [DOI:10.1007/s11831-023-09968-z]
4. [4] Gupta S, Gupta MK, Shabaz M, Sharma A. Deep learning techniques for cancer classification using microarray gene expression data. Front Physiol. 2022;13:952709. doi: 10.3389/fphys.2022.952709. [DOI:10.3389/fphys.2022.952709] [PMID] []
5. [5] Moshood A. Hambali, Tinuke O. Oladele, Kayode S. Adewole. Microarray cancer feature selection: Review, challenges and research directions. International Journal of Cognitive Computing in Engineering. 2020;1:78-97. [DOI:10.1016/j.ijcce.2020.11.001]
6. [6] Turgut S, Dağtekin M, Ensari T.Microarray breast cancer data classification using machine learning methods. 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), Istanbul, Turkey, 2018; 1-3, doi: 10.1109/EBBT.2018.8391468. [DOI:10.1109/EBBT.2018.8391468]
7. [7] Thalor A, Kumar Joon H, Singh G, Roy S, Gupta D. Machine learning assisted analysis of breast cancer gene expression profiles reveals novel potential prognostic biomarkers for triple-negative breast cancer. Comput Struct Biotechnol J. 2022;20: 18-1631. doi: 10.1016/j.csbj.2022.03.019. [DOI:10.1016/j.csbj.2022.03.019] [PMID] []
8. [8] Alhenawi E. a., Al-SayyedR, Hudaib A, Mirjalili S. Feature selection methods on gene expression microarray data for cancer classification: A systematic review. Computers in biology and medicine. 2022; 140: 105051. doi:10.1016/j.compbiomed.2021.105051 [DOI:10.1016/j.compbiomed.2021.105051] [PMID]
9. [9] Bellarmino N, Cantoro R, Huch M, Kilian T, Schlichtmann U, Squillero G. Feature Selection for Cost Reduction In MCU Performance Screening. in 2023 IEEE 24th Latin American Test Symposium (LATS), 2023: 1-6. doi: 10.1109/LATS58125.2023.10154495 [DOI:10.1109/LATS58125.2023.10154495]
10. [10] Theng D, Bhoyar K. K,. Feature selection techniques for machine learning: a survey of more than two decades of research. Knowledge and Information Systems. 2024;66(3):1575-1637. doi: 10.1007/s10115-023-02010-5 [DOI:10.1007/s10115-023-02010-5]
11. [11]M. Z. Ali, A. Abdullah, A. M. Zaki, F. H. Rizk, M. M. Eid, E. M. El-Kenway. Advances and challenges in feature selection methods: a comprehensive review. J. Artif. Intell. Metaheuristics. 2024; 1: 67-77. doi: 10.54216/JAIM.070105 [DOI:10.54216/JAIM.070105]
12. [12]K. Navin, H. K. Nehemiah, Y. Nancy Jane, and H. Veena Saroji. A classification framework using filter-wrapper based feature selection approach for the diagnosis of congenital heart failure. Journal of Intelligent & Fuzzy Systems. 2023; 44(4):6183-218. doi:10.3233/JIFS-230004 [DOI:10.3233/JIFS-230004]
13. [13]Kalaiyarasi M, Rajaguru H. Performance analysis of ovarian cancer detection and classification for microarray gene data," BioMed Research International, 2022;2022(1):6750457. doi:10.1155/2022/6750457 [DOI:10.1155/2022/6750457] [PMID] []
14. [14]Patil S., Balmuri K. R., Frnda J., Parameshachari B., Konda S., Nedoma J,. Identification of Triple Negative Breast Cancer Genes Using Rough Set Based Feature Selection Algorithm & Ensemble Classifier. Human-centric computing and information sciences. 2022; 12. doi:10.22967/HCIS.2022.12.054
15. [15]S. H. Shah, M. J. Iqbal, I. Ahmad, S. Khan, and J. J. P. C. Rodrigues. Optimized Shah, S.H., Iqbal, M.J., Ahmad, I. et al. Optimized gene selection and classification of cancer from microarray gene expression data using deep learning. Neural Comput & Applic (2020). doi:10.1007/s00521-020-05367-8 [DOI:10.1007/s00521-020-05367-8]
16. [16] Alrefai, N., Ibrahim, O. Optimized feature selection method using particle swarm intelligence with ensemble learning for cancer classification based on microarray datasets. Neural Comput & Applic . 2022;(34):13513-28. doi:10.1007/s00521-022-07147-y [DOI:10.1007/s00521-022-07147-y]
17. [17]Othman M. S., Kumaran S. R., Yusuf L. M., Gene selection using hybrid multi-objective cuckoo search algorithm with evolutionary operators for cancer microarray data. IEEE Access. 2020;(8): 186348-61. doi:10.1109/ACCESS.2020.3029890 [DOI:10.1109/ACCESS.2020.3029890]
18. [18]H. Fathi, H. AlSalman, A. Gumaei, I. I. Manhrawy, A. G. Hussien, and P. El-Kafrawy, "An Efficient Cancer Classification Model Using Microarray and High‐Dimensional Data," Computational Intelligence and Neuroscience. 2021; 2021(1). 7231126. doi:10.1155/2021/7231126 [DOI:10.1155/2021/7231126] [PMID] []
19. [19]N. M. Ali, N. Aziz, and R. Besar, "Comparison of microarray breast cancer classification using support vector machine and logistic regression with LASSO and boruta feature selection," Indones J Electr Eng Comput Sci.2020;20(2):712-9. doi:10.11591/ijeecs.v20.i2.pp712-719. [DOI:10.11591/ijeecs.v20.i2.pp712-719]
20. [20]Taghizadeh E., Heydarheydari S., Saberi A., JafarpoorNesheli S., Rezaeijo S. M., Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. BMC Bioinformatics. 2022;23(1):410. doi:10.1186/s12859-022-04965-8 [DOI:10.1186/s12859-022-04965-8] [PMID] []
21. [21]Gokhale M., Mohanty S. K., Ojha A., A stacked autoencoder based gene selection and cancer classification framework. Biomedical Signal Processing and Control. 2022;78: 103999. doi:10.1016/j.bspc.2022.103999 [DOI:10.1016/j.bspc.2022.103999]
22. [22]Jiang Q. Jin M., Feature Selection for Breast Cancer Classification by Integrating Somatic Mutation and Gene Expression. (in English). Frontiers in Genetics, Original Research. 2021;12. doi:10.3389/fgene.2021.629946 [DOI:10.3389/fgene.2021.629946] [PMID] []
23. [23]Li Q, Yang H, Wang P, Liu X, Lv K, Ye M. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. J Transl Med. 2022;20(1):177. doi: 10.1186/s12967-022-03369-9. [DOI:10.1186/s12967-022-03369-9] [PMID] []
24. [24]Alromema N, Syed AH, Khan T. A Hybrid Machine Learning Approach to Screen Optimal Predictors for the Classification of Primary Breast Tumors from Gene Expression Microarray Data. Diagnostics (Basel). 2023;13(4):708. doi: 10.3390/diagnostics13040708. [DOI:10.3390/diagnostics13040708] [PMID] []
25. [25]Yaqoob, A., Verma, N.K. & Aziz, R.M. Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm. Journal of Medical Systems, 2024;48(1):10 doi:10.1007/s10916-023-02188-3 [DOI:10.1007/s10916-023-02031-1] [PMID]
26. [26]Kramer B., Peherstorfer B., Willcox K. E., Learning nonlinear reduced models from data with operator inference. Annual Review of Fluid Mechanics. 2024;56(1): 521-48. doi:10.1146/annurev-fluid-121021-025220 [DOI:10.1146/annurev-fluid-121021-025220]
27. [27]Cong, S., Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review. 2023;56(3):1905-69. doi:10.1007/s10462-022-10213-5 [DOI:10.1007/s10462-022-10213-5]
28. [28] Corominas A. On deciding when to stop metaheuristics: Properties, rules and termination conditions. Operations Research Perspectives. 2023;10:100283. doi:10.1016/j.orp.2023.100283 [DOI:10.1016/j.orp.2023.100283]
29. [29]Karlupia N. Abrol P., Wrapper-based optimized feature selection using nature-inspired algorithms. Neural Computing and Applications. 2023;35(17):12675-89. doi:10.1007/s00542-023-08383-6. [DOI:10.1007/s00521-023-08383-6]
30. [30]Nssibi M., Manita G., Korbaa O., Binary Giza pyramids construction for feature selection. Procedia Computer Science. 2021;192: 676-87. doi:10.1016/j.procs.2021.08.070 [DOI:10.1016/j.procs.2021.08.070]
31. [31]Zhou H., X. Wang, and R. Zhu, "Feature selection based on mutual information with correlation coefficient. Applied intelligence. 2022; 52(5):5457-74. doi:10.1007/s10489-021-02524-x [DOI:10.1007/s10489-021-02524-x]
32. [32]Wang Z., Li M., Li J., A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. Information Sciences. 2015;(307):73-88. doi:10.1016/j.ins.2015.02.031 [DOI:10.1016/j.ins.2015.02.031]
33. [33]H. L. Xie, Jie; Jatkoe, Tim; Hatzis, Christos, Gene Expression Profiles of Breast Cancer. Mendeley Data. 2017;1: doi:10.17632/v3cc2p38hb.1.
34. [34]Singh K., Shastri S., Kumar S., Mansotra V., BC-Net: Early Diagnostics of Breast Cancer Using Nested Ensemble Technique of Machine Learning. Automatic Control and Computer Sciences. 2023;57(6):646-59. doi:10.3103/S0146411623060093 [DOI:10.3103/S0146411623060093]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb