پیام خود را بنویسید
جلد 17، شماره 1 - ( مجله علمی بیماری های پستان ایران 1403 )                   جلد 17 شماره 1 صفحات 83-59 | برگشت به فهرست نسخه ها

Research code: 1400/15/4667/د
Ethics code: IR.UMA.REC.1402.054


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

noruzpuor M, Asghari Zakaria R, Zare N, Ebrahimi H A, Parsa H, Bourang S. Investigating the Anticancer Properties of the Essential Oil and Aqueous Extract of Moringa oleifera and its Biosynthesized Metal Nanoparticles on MCF-7 and BT-549 Cell Lines. ijbd 2024; 17 (1) :59-83
URL: http://ijbd.ir/article-1-1076-fa.html
نوروزپور مهران، اصغری زکریا رسول، زارع ناصر، ابراهیمی حسینعلی، پارسا حامد، بورنگ شیما. بررسی اثرات ضدسرطانی اسانس و عصاره آبی گیاه مورینگا (Moringa oleifera) و نانوذرات فلزی بیوسنتز شده از آن بر لاین‌های سلولی MCF-7 و BT-549. بیماری‌های پستان ایران. 1403; 17 (1) :59-83

URL: http://ijbd.ir/article-1-1076-fa.html


1- گروه تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی، دانشکده کشاورزی و منابع طبیعی، اردبیل، ایران ، m.noruzpuor@gmail.com
2- گروه تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی، دانشکده کشاورزی و منابع طبیعی، اردبیل، ایران
3- گروه فارماسیوتیکس، دانشگاه علوم پزشکی، دانشکده داروسازی، اردبیل، ایران
4- گروه فارماکوگنوزی، دانشگاه علوم پزشکی، دانشکده داروسازی، اردبیل، ایران
چکیده:   (1189 مشاهده)
مقدمه
در سال­های اخیر با پیشرفت نانوتکنولوژی روش­های نوینی جهت درمان بیماری سرطان ابداع شده است. گیاه مورینگا (Moringa oleifera) سرشار از ترکیبات فلاونوئیدی به خصوص کوئرستین است که دارای خواص ضدسرطانی و آنتی‌اکسیدانی می­باشد. در این پژوهش ویژگی­های نانوذرات فلزی آهن، مس، روی و نقره بیوسنتز شده از عصاره آبی گیاه M.­ oleifera مورد مطالعه قرار گرفته و در ادامه به بررسی تأثیر اسانس روغنی و عصاره آبی حاصل از اندام هوایی این گیاه و نانوذرات فلزی حاصل از آن بر رشد و زنده­مانی لاین­های سلولی سرطانی MCF-7 و BT-549 پرداخته شد.
روش بررسی
در این پژوهش پس از بیوسنتز نانوذرات فلزی آهن، مس، روی و نقره از عصاره آبی گیاه M. oleifera و بررسی خواص آن­ها از نظر اندازه به کمک DLS و تأیید ساختار به کمک FTIR­، میزان ترکیبات ثانویه اسانس (به کمک GC-MS) و عصاره آبی گیاه مورینگا (به کمک HPLC) مورد بررسی قرار گرفت. هم چنین خواص ضدسرطانی اسانس و عصاره آبی گیاه (M. oleifera) و نانوذرات فلزی بیوسنتز شده از آن بر دو لاین سلولی MCF-7 و BT-549 مورد ارزیابی قرار گرفت. آزمایش در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. جهت بررسی میزان زنده­مانی سلولی و نتایج فلوسیتومتری به ترتیب از نرم‌افزارFlowJ  استفاده شد.
یافته­ ها
طبق نتایج به دست آمده از DLS اندازه نانوذرات آهن، مس، روی و نقره به ترتیب برابر با 35، 32، 33 و 34 نانومتر بود. میزان IC50 لاین­های سلولیMCF-7  و BT-549 به‌طور معنی­داری و در سطح احتمال یک درصد تحت تأثیر نوع تیمار مورد استفاده قرار گرفت. بیشترین میزان IC50 (9/35 میکرولیتر در میلی‌لیتر) مربوط به لاین سلولی MCF-7 تیمار شده با اسانس روغنی حاصل از اندام هوایی گیاه مورینگا می­باشد. هم­چنین درصد سلول­های نکروزه شده، درصد سلول­های موجود در مرحله پیش­آپوپتوزی و پس­آپوپتوزی لاین­های سلولیMCF-7  و BT-549 مذکور به‌طور معنی­داری و در سطح احتمال یک درصد تحت تأثیر نوع تیمار استفاده شده قرار گرفت. در مورد لاین سلولی MCF-7 بیشترین درصد سلول­های نکروزه شده، سلول­های موجود در مرحله پیش­ و پس آپوپتوزیس (به ترتیب 03/2­، 42/3 و 5/22 درصد) مربوط به تیمار شاهد، عصاره آبی حاصل از اندام هوایی و نانوذرات مس بیوسنتز شده از عصاره آبی حاصل بود. بیشترین درصد سلول­های نکروزه شده، سلول­های واقع در مرحله پیش­ و پس آپوپتوزیس لاین سلولی BT-549 (به ترتیب 33/6، 32/4 و 56/17 درصد) نیز مربوط به تیمار کنترل، نانوذرات مس بیوسنتز شده از عصاره آبی حاصل بود.
نتیجه‌گیری 
طبق نتایج به‌دست‌آمده در این پژوهش نانوذره مس بیوسنتز شده از عصاره آبی گیاه مورینگا بالاترین میزان خاصیت ضدسرطانی بر روی لاین­های سلولی MCF-7 و BT-549 داشت.
 
متن کامل [PDF 2162 kb]   (259 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سلولی مولکولی
دریافت: 1402/8/21 | پذیرش: 1402/10/16 | انتشار: 1403/2/6

فهرست منابع
1. Mahdavifar N, Pakzad R, Ghoncheh M, Pakzad I, Moudi A, Salehiniya H. Spatial analysis of breast cancer incidence in Iran. Asian Pacific Journal of Cancer Prevention. 2016;17: 59-64.‏ [DOI:10.7314/APJCP.2016.17.S3.59] [PMID]
2. Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020-2070. Nature reviews Clinical oncology. 2021;18(10):663-72. [DOI:10.1038/s41571-021-00514-z] [PMID]
3. EnayatRad M, Salehinia H. An investigation of changing patterns in breast cancer incidence trends among Iranian women. Journal of Sabzevar University of Medical Sciences. 2015;22(1):27-35.
4. Esfahani F. editor The situation in Iran over the past 50 years, breast cancer risk factors. Congress of Medical Oncology; 2003.
5. Allahqoli L, Mazidimoradi A, Momenimovahed Z, Rahmani A, Hakimi S, Tiznobaik A, Alkatout I. The global incidence, mortality, and burden of breast cancer in 2019: correlation with smoking, drinking, and drug use. Frontiers in Oncology. 2022;12: 1-9.‏ [DOI:10.3389/fonc.2022.921015] [PMID] []
6. Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer discovery. 2019;9(2):176-98. [DOI:10.1158/2159-8290.CD-18-1177] [PMID] []
7. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. International immunopharmacology. 2020;84:1-23. [DOI:10.1016/j.intimp.2020.106535] [PMID]
8. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine. 2021;9:1-10. [DOI:10.1177/20503121211034366] [PMID] []
9. Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nature Reviews Cancer. 2022;22(6):340-55. [DOI:10.1038/s41568-022-00450-9] [PMID]
10. Tao H, Wu T, Aldeghi M, Wu TC, Aspuru-Guzik A, Kumacheva E. Nanoparticle synthesis assisted by machine learning. Nature reviews materials. 2021;6(8):701-16. [DOI:10.1038/s41578-021-00337-5]
11. Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle characterization: what to measure? Advanced Materials. 2019;31(32):1-22. https://doi.org/10.1002/adma.201970226 [DOI:10.1002/adma.201901556]
12. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials. 2020;13(20):4644. [DOI:10.3390/ma13204644] [PMID] []
13. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva Crespo J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy. 2020;15:22-37. [DOI:10.1016/j.scp.2020.100223]
14. Gur T, Meydan I, Seckin H, Bekmezci M, Sen F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research. 2022;204:1-11. [DOI:10.1016/j.envres.2021.111897] [PMID]
15. Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials. 2022;15(6):21-60. [DOI:10.3390/ma15062160] [PMID] []
16. Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, et al. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Materials science and engineering: C. 2019;100:129-40. [DOI:10.1016/j.msec.2019.02.096] [PMID]
17. Alphandéry E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology. 2019;13(5):573-96. [DOI:10.1080/17435390.2019.1572809] [PMID]
18. Bhattacharya S, Prajapati BG, Ali N, Mohany M, Aboul-Soud MA, Khan R. Therapeutic potential of Methotrexate-Loaded superparamagnetic iron oxide nanoparticles coated with poly (lactic-co-glycolic acid) and polyethylene glycol against breast cancer: Development, characterization, and comprehensive In Vitro Investigation. ACS omega. 2023;8(30):27-49. [DOI:10.1021/acsomega.3c03430] [PMID] []
19. Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Hsiao CD. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials. 2020;10(6):11-26. [DOI:10.3390/nano10061126] [PMID] []
20. Amer M, Awwad A. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. 2020; 7(1): 1-8.
21. Mahmood RI, Kadhim AA, Ibraheem S, Albukhaty S, Mohammed-Salih HS, Abbas RH, et al. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Scientific Reports. 2022;12(1):16-65. [DOI:10.1038/s41598-022-20360-y] [PMID] []
22. Crisan MC, Teodora M, Lucian M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Applied Sciences. 2021;12(1):141-57. [DOI:10.3390/app12010141]
23. Alavi M, Kowalski R, Capasso R, Douglas Melo Coutinho H, Rose Alencar De Menezes I. Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects. 2022;1(1):38-48.
24. Dinparvar S, Bagirova M, Allahverdiyev AM, Abamor ES, Safarov T, Aydogdu M, et al. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. Journal of Photochemistry and Photobiology B: Biology. 2020;2(8):111902. [DOI:10.1016/j.jphotobiol.2020.111902] [PMID]
25. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology. 2019;53:101-14. [DOI:10.1016/j.jddst.2019.101174]
26. Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, et al. Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini Reviews in Medicinal Chemistry. 2021;21(2):245-65. https://doi.org/10.2174/18755607MTExCNTQo5 https://doi.org/10.2174/13895575MTExsNTQB5 [DOI:10.2174/1389557520999201116163012] [PMID]
27. Vishwanath R, Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry. 2021;4:1-12. [DOI:10.1016/j.crgsc.2021.100205]
28. Mughal B, Zaidi SZJ, Zhang X, Hassan SU. Biogenic nanoparticles: Synthesis, characterisation and applications. Applied Sciences. 2021;11(6):1-18. [DOI:10.3390/app11062598]
29. Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant biology. 2005;7(06):581-91. [DOI:10.1055/s-2005-873009] [PMID]
30. Peixoto JRO, Silva GC, Costa RA, Vieira GHF, Fonteles Filho AA, dos Fernandes Vieira RHS. In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pacific journal of tropical medicine. 2011;4(3):201-14. [DOI:10.1016/S1995-7645(11)60069-2] [PMID]
31. Alizadeh BB, Tabatabaei YF, Noorbakhsh H, Riazi F, Jajarmi A.. Study of the antibacterial activity of methanolic and aqueous extracts of Myrtus communis on pathogenic strains causing infection. 2016; 18(2): 1-7. [DOI:10.17795/zjrms-5989]
32. Moradi S, Razavi S, Vasiee A. Antioxidant and antimicrobial activity of Thymus vulgaris L. on some pathogenic bacteria 'in vitro'. Agricultural Advances. 2014;3(4):124-30.
33. Wagner GJ. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology. 1979;64(1):88-93. [DOI:10.1104/pp.64.1.88] [PMID] []
34. Hurst W, Martin Jr R, Zoumas B. Application of HPLC to characterization of individual carbohydrates in foods. Journal of Food Science. 1979;44(3):892-5. [DOI:10.1111/j.1365-2621.1979.tb08529.x]
35. Shebl A, Hassan A, Salama DM, Abd El-Aziz M, Abd Elwahed MS. Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. Journal of Nanomaterials. 2019;1-11. [DOI:10.1155/2019/3476347]
36. Akintelu SA, Oyebamiji AK, Olugbeko SC, Latona DF. Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Current Research in Green and Sustainable Chemistry. 2021; 4:1-13. [DOI:10.1016/j.crgsc.2021.100176]
37. Singh P, Pandit S, Jers C, Joshi AS, Garnæs J, Mijakovic I. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific reports. 2021;11(1):12-9. [DOI:10.1038/s41598-021-92006-4] [PMID] []
38. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing. 2015;32:55-61. [DOI:10.1016/j.mssp.2014.12.053]
39. Dappula SS, Kandrakonda YR, Shaik JB, Mothukuru SL, Lebaka VR, Mannarapu M, et al. Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer's properties. Journal of Molecular Structure. 2023:12-23. [DOI:10.1016/j.molstruc.2022.134264]
40. Reddy DN. Essential oils extracted from medicinal plants and their applications. Natural Bio-active Compounds: Volume 1: Production and Applications. 2019:237-83. [DOI:10.1007/978-981-13-7154-7_9]
41. Hopkins SL, Siewert B, Askes S, Veldhuizen P, Zwier R, Heger M, et al. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochemical & Photobiological Sciences. 2016;15(5):644-53. [DOI:10.1039/c5pp00424a] [PMID] []
42. Setiawati A, Candrasari DS, Setyajati FE, Prasetyo VK, Setyaningsih D, and Hartini, YS. Anticancer drug screening of natural products: In vitro: cytotoxicity assays, techniques, and challenges. Asian Pacific Journal of Tropical Biomedicine. 2022;12(7):279-89.‏ [DOI:10.4103/2221-1691.350176]
43. Sivakumar P, Prabhakar P, Doble M. Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones. Medicinal Chemistry Research. 2011;20:482-92. [DOI:10.1007/s00044-010-9342-1]
44. Kumar A, Ahmad P, Maurya RA, Singh A, Srivastava AK. Novel 2-aryl-naphtho [1, 2-d] oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities. European journal of medicinal chemistry. 2009;44(1):109-16. [DOI:10.1016/j.ejmech.2008.03.009] [PMID]
45. Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed research international. 2014:1-11. [DOI:10.1155/2014/497606] [PMID] []
46. Saapilin NS, Yong WTL, Cheong BE, Kamaruzaman KA, Rodrigues KF. Physiological and biochemical responses of Chinese cabbage (Brassica rapa var. chinensis) to different light treatments. Chemical and Biological Technologies in Agriculture. 2022;9(1):1-20. [DOI:10.1186/s40538-022-00293-4]
47. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 2011;82(1):152-9. [DOI:10.1016/j.colsurfb.2010.08.036] [PMID]
48. Ren J, Wang J, Karthikeyan S, Liu H, Cai J. Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. 2019.
49. Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 2017;7(1):1-9. [DOI:10.1186/s13568-017-0351-z] [PMID] []
50. Yuenyongsawad S, Tewtrakul S. Essential oil components and biological activities of Coleus parvifolius leaves. Songklanakarin J Sci Technol. 2005;27(27):497-501.
51. Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha V, Vidhya E, Praseetha P. Heneicosane-A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products. 2020;154:112-20. [DOI:10.1016/j.indcrop.2020.112748]
52. Britt KL, Cuzick J, Phillips K-A. Key steps for effective breast cancer prevention. Nature Reviews Cancer. 2020;20(8):417-36. [DOI:10.1038/s41568-020-0266-x] [PMID]
53. Hazafa A, Rehman K-U-, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutrition and cancer. 2020;72(3):386-97. [DOI:10.1080/01635581.2019.1637006] [PMID]
54. Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine & pharmacotherapy. 2019;116:10-9. [DOI:10.1016/j.biopha.2019.109004] [PMID]
55. Fernández J, Silván B, Entrialgo-Cadierno R, Villar CJ, Capasso R, Uranga JA, et al. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomedicine & Pharmacotherapy. 2021;143:11-22. [DOI:10.1016/j.biopha.2021.112241] [PMID]
56. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. [DOI:10.3390/nu12020457] [PMID] []
57. Forni C, Rossi M, Borromeo I, Feriotto G, Platamone G, Tabolacci C, et al. Flavonoids: A myth or a reality for cancer therapy? Molecules. 2021;26(12):35-83. [DOI:10.3390/molecules26123583] [PMID] []
58. Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell & bioscience. 2020;10:1-17. [DOI:10.1186/s13578-020-00397-0] [PMID] []
59. Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, et al. Targeting mitochondrial biogenesis with polyphenol compounds. Oxidative Medicine and Cellular Longevity. 2021: 1-20. [DOI:10.1155/2021/4946711] [PMID] []
60. Mahajan SG, Mehta AA. Immunosuppressive activity of ethanolic extract of seeds of Moringa oleifera Lam. in experimental immune inflammation. Journal of ethnopharmacology. 2010;130(1):183-96. [DOI:10.1016/j.jep.2010.04.024] [PMID]
61. Al-Rahbi BAA, Al-Sadi AM, Al-Harrasi MMA, Al-Sabahi JN, Al-Mahmooli IH, Blackburn D, et al. Effectiveness of endophytic and rhizospheric bacteria from Moringa spp. in controlling Pythium aphanidermatum damping-off of cabbage. Plants. 2023;12(3):668-72. [DOI:10.3390/plants12030668] [PMID] []
62. Satyan K, Swamy N, Dizon DS, Singh R, Granai CO, Brard L. Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecologic oncology. 2006;103(1):261-70. [DOI:10.1016/j.ygyno.2006.03.002] [PMID]
63. Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, et al. An antitumor promoter from Moringa oleifera Lam. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999;440(2):181-8. [DOI:10.1016/S1383-5718(99)00025-X] [PMID]
64. Kalkunte S, Swamy N, Dizon DS, Brard L. Benzyl isothiocyanate (BITC) induces apoptosis in ovarian cancer cells in vitro. Journal of experimental therapeutics & oncology. 2006;5(4):1-16.
65. Lan C-Y, Chen S-Y, Kuo C-W, Lu C-C, Yen G-C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Journal of food and drug analysis. 2019;27(4):887-96. [DOI:10.1016/j.jfda.2019.07.001] [PMID] []
66. Kim S-H, Yoo E-S, Woo J-S, Han S-H, Lee J-H, Jung S-H, et al. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. European journal of pharmacology. 2019;860:1-17. [DOI:10.1016/j.ejphar.2019.172568] [PMID]
67. Hasan AA, Tatarskiy V, Kalinina E. Synthetic pathways and the therapeutic potential of quercetin and curcumin. International Journal of Molecular Sciences. 2022;23(22):14413. [DOI:10.3390/ijms232214413] [PMID] []
68. Kedhari Sundaram M, Raina R, Afroze N, Bajbouj K, Hamad M, Haque S, et al. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Bioscience reports. 2019;39(8):1-15. [DOI:10.1042/BSR20190720] [PMID] []
69. Akbari A, Akbarzadeh A, Tehrani MR, Cohan RA, Chiani M, Mehrabi MR. Development and characterization of nanoliposomal hydroxyurea against BT-474 breast cancer cells. Advanced Pharmaceutical Bulletin. 2020;10(1):1-39. [DOI:10.15171/apb.2020.005] [PMID] []
70. Bharali R, Tabassum J, Azad MRH. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pacific Journal of Cancer Prevention. 2003;4(2):131-40.
71. Daghaghele S, Kiasat AR, Mirzajani R. Evaluation of different extraction methods of phytochemical and antioxidant compounds of Moringa oleifera leaf extract. Journal of food science and technology (Iran). 2022;18(121):163-72. [DOI:10.52547/fsct.18.121.13]
72. Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids and Surfaces B: Biointerfaces. 2020;194:11-22. [DOI:10.1016/j.colsurfb.2020.111151] [PMID]
73. Keyhanfar M, Mansouri Tehrani HA. The role of plant antioxidants in the synthesis of metal nanoparticles. Journal of Plant Process and Function. 2022;6(1):67-76.
74. Al-Nuairi AG, Mosa KA, Mohammad MG, El-Keblawy A, Soliman S, Alawadhi H. Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biological trace element research. 2020;194:560-9. [DOI:10.1007/s12011-019-01791-7] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

تمامی حقوق نرم‌افزاری اين وب سایت متعلق به مجله علمی بیماری‌های پستان ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb