1. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy. 2019:151-64. [
DOI:10.2147/BCTT.S176070] [
PMID] [
]
2. Wang S, Shang P, Yao G, Ye C, Chen L, Hu X. A genomic and transcriptomic study toward breast cancer. Frontiers in Genetics. 2022;13:989565. [
DOI:10.3389/fgene.2022.989565] [
PMID] [
]
3. Johnson KS, Conant EF, Soo MS. Molecular subtypes of breast cancer: a review for breast radiologists. Journal of Breast Imaging. 2021;3(1):12-24. [
DOI:10.1093/jbi/wbaa110] [
PMID]
4. Cuong DM, Van Ngoc B. Identification of hub genes and drug-gene interactions for targeted breast cancer treatment by integrated bioinformatics analysis. Vietnam Journal of Biotechnology. 2023;21(1):21-34. [
DOI:10.15625/1811-4989/17399]
5. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Molecular Medicine. 2016;8(5):527-49. [
DOI:10.15252/emmm.201505891] [
PMID] [
]
6. Maire V, Némati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G, et al. Polo-like Kinase 1: A Potential Therapeutic Option in Combination with Conventional Chemotherapy for the Management of Patients with Triple-Negative Breast Cancer. Cancer Research. 2013;73(2):813-23. [
DOI:10.1158/0008-5472.CAN-12-2633] [
PMID]
7. Clarke C, Madden SF, Doolan P, Aherne ST, Joyce H, O'Driscoll L, et al. Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis. 2013;34(10):2300-8. [
DOI:10.1093/carcin/bgt208] [
PMID]
8. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-9. [
DOI:10.1093/bioinformatics/btz931] [
PMID] [
]
9. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498-504. [
DOI:10.1101/gr.1239303] [
PMID] [
]
10. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18-27. [
DOI:10.1016/j.neo.2022.01.001] [
PMID] [
]
11. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649-58. [
DOI:10.1016/j.neo.2017.05.002] [
PMID] [
]
12. Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. The Innovation. 2024;5(3). [
DOI:10.1016/j.xinn.2024.100625] [
PMID] [
]
13. Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative toxicogenomics database (CTD): update 2023. Nucleic acids research. 2023;51(D1):D1257-D62. [
DOI:10.1093/nar/gkac833] [
PMID] [
]
14. Shahmoradi M, Fazilat A, Ghaderi-Zefrehei M, Ardalan A, Bigdeli A, Nafissi N, et al. Unveiling Recurrence Patterns: Analyzing Predictive Risk Factors for Breast Cancer Recurrence after Surgery. Cancer Informatics. 2024;23:11769351241297633. [
DOI:10.1177/11769351241297633] [
PMID] [
]
15. Amiri R, Nabi PN, Fazilat A, Roshani F, Kararoudi AN, Hemmati-Dinarvand M, et al. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Hormone Molecular Biology and Clinical Investigation. 2024. [
DOI:10.1515/hmbci-2024-0066] [
PMID]
16. Ren Q, Khoo WH, Corr AP, Phan TG, Croucher PI, Stewart SA. Gene expression predicts dormant metastatic breast cancer cell phenotype. Breast Cancer Research. 2022;24(1):10. [
DOI:10.1186/s13058-022-01503-5] [
PMID] [
]
17. Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. Journal of Experimental & Clinical Cancer Research. 2022;41(1):96. [
DOI:10.1186/s13046-022-02321-5] [
PMID] [
]
18. Aslan M, Hsu E-C, Garcia-Marques FJ, Bermudez A, Liu S, Shen M, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ Breast Cancer. 2021;7(1):141. [
DOI:10.1038/s41523-021-00341-6] [
PMID] [
]
19. Li H-N, Zheng W-H, Du Y-Y, Wang G, Dong M-L, Yang Z-F, et al. ZW10 interacting kinetochore protein may serve as a prognostic biomarker for human breast cancer: An integrated bioinformatics analysis. Oncology Letters. 2020;19(3):2163-74. [
DOI:10.3892/ol.2020.11353]
20. Wang P, Ning J, Chen W, Zou F, Yu W, Rao T, et al. Comprehensive analysis indicated that NDE1 is a potential biomarker for pan‐cancer and promotes bladder cancer progression. Cancer Medicine. 2024;13(5):e6931. [
DOI:10.1002/cam4.6931] [
PMID] [
]
21. Blatkiewicz M, Kamiński K, Szyszka M, Al-Shakarchi Z, Olechnowicz A, Stelcer E, et al. The Enhanced Expression of ZWILCH Predicts Poor Survival of Adrenocortical Carcinoma Patients. Biomedicines. 2023;11(4):1233. [
DOI:10.3390/biomedicines11041233] [
PMID] [
]
22. Lin T, Zhang Y, Lin Z, Peng L. ZWINT is a promising therapeutic biomarker associated with the immune microenvironment of hepatocellular carcinoma. International Journal of General Medicine. 2021:7487-501. [
DOI:10.2147/IJGM.S340057] [
PMID] [
]
23. Lin Y, Kuang W, Wu B, Xie C, Liu C, Tu Z. IL-12 induces autophagy in human breast cancer cells through AMPK and the PI3K/Akt pathway. Molecular medicine reports. 2017;16(4):4113-8. [
DOI:10.3892/mmr.2017.7114] [
PMID]