Write your message
Volume 17, Issue 4 (Iranian Journal of Breast Diseases 2025)                   ijbd 2025, 17(4): 52-67 | Back to browse issues page

Ethics code: IR.LUMS.REC.1402.174


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afsharifard P, Dowlatshahi M B, Abbasi M, Rezaeian A, Amraei M. Prediction of Received Heart and Lung Radiation Dose in Breast Cancer Patients Undergoing Radiation Therapy Using Supervised Machine Learning. ijbd 2025; 17 (4) :52-67
URL: http://ijbd.ir/article-1-1109-en.html
1- Department of Health Information Technology, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
2- Department of Computer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
3- Department of Radiation Oncology, School of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran
4- Department of Radiology Technology, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
5- Department of Health Information Technology, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran , morteza.amraei@yahoo.com
Abstract:   (900 Views)
Introduction: The heart and lungs are among the organs at risk of receiving additional radiation during radiation therapy of breast cancer patients. In recent years, artificial intelligence and machine learning have brought about significant advancements in the field of medicine. This study aimed to predict the radiation dose received by the heart and lungs in breast cancer patients undergoing radiotherapy, taking into account the anatomical characteristics of these organs through the application of machine learning techniques.
Methods: This applied study was conducted by reviewing medical records in 2023 and extracting anatomical features present in chest computed tomography scans of 210 female patients with left breast cancer who had undergone lumpectomy surgery. Patient data were extracted from the Picture Archiving and Communication Syste, and multi-label classification algorithms were employed to predict the radiation dose received by the heart and lungs. The performance of the algorithms was further evaluated using metrics such as accuracy, precision, recall, F1-Score, and Hamming loss.
Results: Based on the performance evaluation results of 7 multi-label classification algorithms and considering 16 anatomical variables influencing the amount of radiation received by the heart and lungs, the Random Forest (RF) algorithm achieved the best performance among other algorithms with an accuracy of 41.9%, precision of 73.3%, recall of 70.6%, F1 score of 73.1%, and Hamming loss of 27.4%.
Conclusion: The use of
machine learning algorithms and considering anatomical features make it possible to identify suitable patients for 3D wedge pair radiotherapy. More advanced techniques, such as Intensity-Modulated Radiation Therapy or Deep Inspiration Breath Hold, can be recommended for other patients at risk of receiving high doses of radiation to the heart and lungs.
Full-Text [PDF 709 kb]   (389 Downloads)    
Type of Study: Applicable | Subject: Health informatics
Received: 2024/05/13 | Accepted: 2024/09/26 | Published: 2024/12/27

References
1. Monirujjaman Khan M, Islam S, Sarkar S, Ayaz FI, Ananda MK, Tazin T, et al. Machine Learning Based Comparative Analysis for Breast Cancer Prediction. J Healthc Eng. 2022;2022. [DOI:10.1155/2022/4365855] [PMID] []
2. Zahedi A, Rafiemanesh H, Enayatrad M, Ghoncheh M, Salehiniya H. Incidence, trends and epidemiology of cancers in North West of Iran. Asian Pacific J Cancer Prev. 2015;16(16):7189-93. [DOI:10.7314/APJCP.2015.16.16.7189] [PMID]
3. Mahdavifar N, Pakzad R, Ghoncheh M, Pakzad I, Moudi A, Salehiniya H. Spatial analysis of breast cancer incidence in Iran. Asian Pacific J Cancer Prev. 2016;17:59-64. [DOI:10.7314/APJCP.2016.17.S3.59] [PMID]
4. Mohammadpour A, Jahangirian E, Moharrami T, Goljah Rad G, Javanparast Sheikhani L, Taghizadeh S. Breast Cancer, Genetic Factors and Methods of Diagnosis. Sarem J Reprod Med. 2020;4(4):198-207. [DOI:10.52547/sjrm.4.4.198]
5. Yazdani S, Yarahmdi M. Evaluation of dose distributions in PTV and organs at risk in left-sided breast cancer, treated by tangential wedged technique in Tohid radiotherapy center in Sanandaj. Sci J Kurdistan Univ Med Sci. 2018;22(6):1-10.
6. Yu H, Chen F, Lam KO, Yang L, Wang Y, Jin JY, et al. Potential Determinants for Radiation-Induced Lymphopenia in Patients With Breast Cancer Using Interpretable Machine Learning Approach. Front Immunol. 2022;13(June):1-13. [DOI:10.3389/fimmu.2022.768811] [PMID] []
7. Dr Emami B. Tolerence of Normal tissue to Therapeutic radiation. Reports Radiother Oncol. 2013;1(1):35-48.
8. Brodin NP, Schulte L, Velten C, Martin W, Shen S, Shen J, et al. Organ-at-risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT. J Appl Clin Med Phys. 2022;23(6). [DOI:10.1002/acm2.13609] [PMID] []
9. Ahn SH, Kim ES, Kim C, Cheon W, Kim M, Lee SB, et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer. Radiat Oncol [Internet]. 2021;16(1):1-13. https://doi.org/10.21203/rs.3.rs-147694/v1 [DOI:10.1186/s13014-021-01864-9]
10. Yamauchi R, Mizuno N, Itazawa T, Saitoh H, Kawamori J. Dosimetric evaluation of deep inspiration breath hold for left-sided breast cancer: Analysis of patient-specific parameters related to heart dose reduction. J Radiat Res. 2020;61(3):447-56. [DOI:10.1093/jrr/rraa006] [PMID] []
11. Ferini G, Valenti V, Viola A, Umana GE, Martorana E. A Critical Overview of Predictors of Heart Sparing by Deep-Inspiration-Breath-Hold Irradiation in Left-Sided Breast Cancer Patients. Cancers (Basel). 2022;14(14):1-13. [DOI:10.3390/cancers14143477] [PMID] []
12. Chung SY, Oh J, Chang JS, Shin J, Kim KH, Chun KH, et al. Risk of Cardiac Disease in Patients With Breast Cancer: Impact of Patient-Specific Factors and Individual Heart Dose From Three-Dimensional Radiation Therapy Planning. Int J Radiat Oncol Biol Phys [Internet]. 2021;110(2):473-81. [DOI:10.1016/j.ijrobp.2020.12.053] [PMID]
13. Feng CH, Gerry E, Chmura SJ, Hasan Y, Al-Hallaq HA. An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys [Internet]. 2015;91(1):58-64. [DOI:10.1016/j.ijrobp.2014.09.007] [PMID] []
14. Hong JC, Rahimy E, Gross CP, Shafman T, Hu X, Yu JB, et al. Radiation dose and cardiac risk in breast cancer treatment: An analysis of modern radiation therapy including community settings. Pract Radiat Oncol [Internet]. 2018;8(3):e79-86. [DOI:10.1016/j.prro.2017.07.005] [PMID]
15. Selvaraj RN, Beriwal S, Pourarian RJ, Lalonde RJ, Chen A, Mehta K, et al. Clinical Implementation of Tangential Field Intensity Modulated Radiation Therapy (IMRT) Using Sliding Window Technique and Dosimetric Comparison with 3D Conformal Therapy (3DCRT) in Breast Cancer. Med Dosim. 2007;32(4):299-304. [DOI:10.1016/j.meddos.2007.03.001] [PMID]
16. Hardenbergh PH, Munley MT, Bentel GC, Kedem R, Borges-Neto S, Hollis D, et al. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: Preliminary results. Int J Radiat Oncol Biol Phys. 2001;49(4):1023-8. [DOI:10.1016/S0360-3016(00)01531-5] [PMID]
17. Nankali S, Zirak A, Poulsen PR. Investigation of the accuracy of deep inspiration breath hold left-sided breast cancer radiotherapy using a surface guiding system. J Nucl Sci Technol. 2020;92(2):166-77.
18. Blom Goldman U, Anderson M, Wennberg B, Lind P. Radiation pneumonitis and pulmonary function with lung dose-volume constraints in breast cancer irradiation. J Radiother Pract. 2014;13(2):211-7. [DOI:10.1017/S1460396913000228] [PMID] []
19. Adams MJ, Hardenbergh PH, Constine LS, Lipshultz E. Radiation-associated cardio v ascular disease. Crit Rev Oncol Hematol. 2003;45:55-75. [DOI:10.1016/S1040-8428(01)00227-X] [PMID]
20. Chen CH, Hsieh CC, Chang CS, Chen MF. A retrospective analysis of dose distribution and toxicity in patients with left breast cancer treated with adjuvant intensity-modulated radiotherapy: Comparison with three-dimensional conformal radiotherapy. Cancer Manag Res. 2020;12:9173-82. [DOI:10.2147/CMAR.S269893] [PMID] []
21. M. I. Jordan, T. M. Mitchell. Machine learning: Trends,perspectives, and prospects. Science. 2015;349(6245):255-60. [DOI:10.1126/science.aaa8415] [PMID]
22. Al-Hammad WE, Kuroda M, Kamizaki R, Tekiki N, Ishizaka H, Kuroda K, et al. Mean Heart Dose Prediction Using Parameters of Single-Slice Computed Tomography and Body Mass Index: Machine Learning Approach for Radiotherapy of Left-Sided Breast Cancer of Asian Patients. Curr Oncol. 2023;30(8): 7412-24. [DOI:10.3390/curroncol30080537] [PMID] []
23. Kamizaki R, Kuroda M, Al Hammad W, Tekiki N, Ishizaka H, Kuroda K, et al. Evaluation of the accuracy of heart dose prediction by machine learning for selecting patients not requiring deep inspiration breath hold radiotherapy after breast cancer surgery. Exp Ther Med. 2023;26(5):1-8. [DOI:10.3892/etm.2023.12235] [PMID] []
24. Kundrát P, Rennau H, Remmele J, Sebb S, Simonetto C, Kaiser JC, et al. Anatomy-dependent lung doses from 3D-conformal breast-cancer radiotherapy. Sci Rep [Internet]. 2022;12(1):1-9. [DOI:10.1038/s41598-022-14149-2] [PMID] []
25. Karlsen J, Tandstad T, Sowa P, Salvesen Ø, Stenehjem JS, Lundgren S, et al. Pneumonitis and fibrosis after breast cancer radiotherapy: occurrence and treatment-related predictors. Acta Oncol (Madr) [Internet]. 2021;60(12):1651-8. [DOI:10.1080/0284186X.2021.1976828] [PMID]
26. Goldman UB, Wennberg B, Svane G, Bylund H, Lind P. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5(1):1-6. [DOI:10.1186/1748-717X-5-99] [PMID] []
27. Jacob S, Pathak A, Franck D, Latorzeff I, Jimenez G, Fondard O, et al. Early detection and prediction of cardiotoxicity after radiation therapy for breast cancer: The BACCARAT prospective cohort study. Radiat Oncol [Internet]. 2016;11(1):1-10. [DOI:10.1186/s13014-016-0627-5] [PMID] []
28. Muttath G, Erakkotan GK, Jayaraj A, Cheruliyil Ayyappan S, Kumar. E.S A, Narayanan V, et al. Volumetric Estimation of Lung Dose and Its Association with Pneumonitis Following Radiotherapy in Breast Cancer Patients. Asian Pacific J Cancer Care. 2022;7(2):207-11. [DOI:10.31557/apjcc.2022.7.2.207-211]
29. Sorower M. A literature survey on algorithms for multi-label learning. Oregon State Univ Corvallis [Internet]. 2010; (October):1-25.
30. Jungjit S, Michaelis M, Freitas AA, Cinatl J. Extending multi-label feature selection with KEGG pathway information for microarray data analysis. 2014 IEEE Conf Comput Intell Bioinforma Comput Biol CIBCB 2014. 2014; [DOI:10.1109/CIBCB.2014.6845501]
31. Valdes G, Solberg TD, Heskel M. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol [Internet]. 2016;61:6105-20. [DOI:10.1088/0031-9155/61/16/6105] [PMID] []
32. Saadatmand P, Mahdavi SR, Nikoofar A, Jazaeri SZ, Ramandi FL, Esmaili G, et al. A dosiomics model for prediction of radiation-induced acute skin toxicity in breast cancer patients: machine learning-based study for a closed bore linac. Eur J Med Res [Internet]. 2024;29(1):282. [DOI:10.1186/s40001-024-01855-y] [PMID] []
33. DeCesaris CM, Pollock A, Zhang B, Poirier Y, Kowalski E, Paulosky K, et al. Assessing the Need for Adjusted Organ-at-Risk Planning Goals for Patients Undergoing Adjuvant Radiation Therapy for Locally Advanced Breast Cancer with Proton Radiation. Pract Radiat Oncol. 2021;11(2):108-18. [DOI:10.1016/j.prro.2020.09.003] [PMID]
34. Ueda Y, Gerber NK, Das IJ. Model-based cardiac dose estimation in radiation treatment of left breast cancer. Br J Radiol. 2018;91(1090). [DOI:10.1259/bjr.20180287] [PMID] []
35. Teimouri K, Khoshgard K. Investigating the Radiation Dose Received by the Heart and Its Electrocardiographic Changes after Three-dimensional Conformal Radiation Therapy in Patients with Left Breast Cancer. Avicenna J Clin Med. 2023;30(2): 72-80. [DOI:10.32592/ajcm.30.2.72] [PMID] []
36. Nielsen MH, Berg M, Pedersen AN, Andersen K, Glavicic V, Jakobsen EH, et al. Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: National guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group. Acta Oncol (Madr). 2013;52(4):703-10. [DOI:10.3109/0284186X.2013.765064] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb