پیام خود را بنویسید
جلد 17، شماره 4 - ( مجله علمی بیماری های پستان ایران 1403 )                   جلد 17 شماره 4 صفحات 67-52 | برگشت به فهرست نسخه ها

Ethics code: IR.LUMS.REC.1402.174


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afsharifard P, Dowlatshahi M B, Abbasi M, Rezaeian A, Amraei M. Prediction of Received Heart and Lung Radiation Dose in Breast Cancer Patients Undergoing Radiation Therapy Using Supervised Machine Learning. ijbd 2025; 17 (4) :52-67
URL: http://ijbd.ir/article-1-1109-fa.html
افشاری فرد پوریا، دولتشاهی محمدباقر، عباسی مهشید، رضائیان عباس، امرائی مرتضی. پیش بینی اشعه دریافتی قلب و ریه در بیماران سرطان پستان تحت پرتودرمانی با استفاده از یادگیری ماشین نظارت شده. بیماری‌های پستان ایران. 1403; 17 (4) :52-67

URL: http://ijbd.ir/article-1-1109-fa.html


1- گروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
2- گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم آباد، ایران
3- گروه رادیوانکولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
4- گروه تکنولوژی پرتوشناسی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
5- گروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران ، morteza.amraei@yahoo.com
چکیده:   (553 مشاهده)
مقدمه: قلب و ریه از جمله ارگان­ های در معرض خطر دریافت اشعه اضافی در طول پرتودرمانی بیماران مبتلا به سرطان پستان هستند. در سال­ های اخیر هوش مصنوعی و یادگیری ماشین در علم پزشکی تحولات زیادی به وجود آورده است؛ هدف از این مطالعه پیش ­بینی اشعه دریافتی قلب و ریه با درنظر گرفتن ویژگی­ های آناتومیکی برای بیماران سرطان پستان تحت پرتودرمانی با استفاده از یادگیری ماشین است.
روش بررسی: این مطالعه کاربردی از طریق بررسی پرونده­ های پزشکی در سال 1402 و با استخراج ویژگی­ های آناتومیکی موجود در CT-Scan قفسه­ سینه 210 بیمار زن مبتلا به سرطان پستان چپ بعد از عمل جراحی لامپکتومی انجام شد. اطلاعات بیماران از سیستم ذخیره و انتقال تصاویر (PACS) استخراج شد و برای پیش­ بینی اشعه دریافتی قلب و ریه از الگوریتم ­های دسته ­بندی چند برچسبه استفاده شد. همچنین برای ارزیابی عملکرد الگوریتم­ ها ازAccuracy , Precision , Recall   F1-Score,  Hamming loss, استفاده شد.
یافته­ ها: با توجه به نتایج ارزیابی عملکرد 7 الگوریتم دسته ­بندی چند برچسبه و با درنظر گرفتن 16 متغیر آناتومیکی تاثیرگذار بر میزان اشعه دریافتی قلب و ریه، الگوریتم جنگل تصادفی (RF) با صحت 9/ 41%، دقت 3/ 73%، پوشش 6/ 70%، امتیازF1  3/ 71% و زیان همینگ 4/ 27% بهترین عملکرد را بین سایر الگوریتم­ ها داشته است.
نتیجه ­گیری: با استفاده از الگوریتم ­های یادگیری ماشین و با در نظرگرفتن ویژگی­ های آناتومیکی می­ توان بیماران مناسب برای پرتودرمانی3D wedge pair  را شناسایی کرده و برای سایر بیماران که در خطر دریافت دوز بالای اشعه قلب و ریه هستند تکنیک­ های پیشرفته­ تر مانندIMRT  (پرتودرمانی با شدت مدوله شده) یا DIBH (پرتودرمانی با تکنیک کنترل تنفس) و .... را پیشنهاد داد.
متن کامل [PDF 709 kb]   (206 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: انفورماتیک پزشکی
دریافت: 1403/2/24 | پذیرش: 1403/7/5 | انتشار: 1403/10/7

فهرست منابع
1. Monirujjaman Khan M, Islam S, Sarkar S, Ayaz FI, Ananda MK, Tazin T, et al. Machine Learning Based Comparative Analysis for Breast Cancer Prediction. J Healthc Eng. 2022;2022. [DOI:10.1155/2022/4365855] [PMID] []
2. Zahedi A, Rafiemanesh H, Enayatrad M, Ghoncheh M, Salehiniya H. Incidence, trends and epidemiology of cancers in North West of Iran. Asian Pacific J Cancer Prev. 2015;16(16):7189-93. [DOI:10.7314/APJCP.2015.16.16.7189] [PMID]
3. Mahdavifar N, Pakzad R, Ghoncheh M, Pakzad I, Moudi A, Salehiniya H. Spatial analysis of breast cancer incidence in Iran. Asian Pacific J Cancer Prev. 2016;17:59-64. [DOI:10.7314/APJCP.2016.17.S3.59] [PMID]
4. Mohammadpour A, Jahangirian E, Moharrami T, Goljah Rad G, Javanparast Sheikhani L, Taghizadeh S. Breast Cancer, Genetic Factors and Methods of Diagnosis. Sarem J Reprod Med. 2020;4(4):198-207. [DOI:10.52547/sjrm.4.4.198]
5. Yazdani S, Yarahmdi M. Evaluation of dose distributions in PTV and organs at risk in left-sided breast cancer, treated by tangential wedged technique in Tohid radiotherapy center in Sanandaj. Sci J Kurdistan Univ Med Sci. 2018;22(6):1-10.
6. Yu H, Chen F, Lam KO, Yang L, Wang Y, Jin JY, et al. Potential Determinants for Radiation-Induced Lymphopenia in Patients With Breast Cancer Using Interpretable Machine Learning Approach. Front Immunol. 2022;13(June):1-13. [DOI:10.3389/fimmu.2022.768811] [PMID] []
7. Dr Emami B. Tolerence of Normal tissue to Therapeutic radiation. Reports Radiother Oncol. 2013;1(1):35-48.
8. Brodin NP, Schulte L, Velten C, Martin W, Shen S, Shen J, et al. Organ-at-risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT. J Appl Clin Med Phys. 2022;23(6). [DOI:10.1002/acm2.13609] [PMID] []
9. Ahn SH, Kim ES, Kim C, Cheon W, Kim M, Lee SB, et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer. Radiat Oncol [Internet]. 2021;16(1):1-13. https://doi.org/10.21203/rs.3.rs-147694/v1 [DOI:10.1186/s13014-021-01864-9]
10. Yamauchi R, Mizuno N, Itazawa T, Saitoh H, Kawamori J. Dosimetric evaluation of deep inspiration breath hold for left-sided breast cancer: Analysis of patient-specific parameters related to heart dose reduction. J Radiat Res. 2020;61(3):447-56. [DOI:10.1093/jrr/rraa006] [PMID] []
11. Ferini G, Valenti V, Viola A, Umana GE, Martorana E. A Critical Overview of Predictors of Heart Sparing by Deep-Inspiration-Breath-Hold Irradiation in Left-Sided Breast Cancer Patients. Cancers (Basel). 2022;14(14):1-13. [DOI:10.3390/cancers14143477] [PMID] []
12. Chung SY, Oh J, Chang JS, Shin J, Kim KH, Chun KH, et al. Risk of Cardiac Disease in Patients With Breast Cancer: Impact of Patient-Specific Factors and Individual Heart Dose From Three-Dimensional Radiation Therapy Planning. Int J Radiat Oncol Biol Phys [Internet]. 2021;110(2):473-81. [DOI:10.1016/j.ijrobp.2020.12.053] [PMID]
13. Feng CH, Gerry E, Chmura SJ, Hasan Y, Al-Hallaq HA. An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys [Internet]. 2015;91(1):58-64. [DOI:10.1016/j.ijrobp.2014.09.007] [PMID] []
14. Hong JC, Rahimy E, Gross CP, Shafman T, Hu X, Yu JB, et al. Radiation dose and cardiac risk in breast cancer treatment: An analysis of modern radiation therapy including community settings. Pract Radiat Oncol [Internet]. 2018;8(3):e79-86. [DOI:10.1016/j.prro.2017.07.005] [PMID]
15. Selvaraj RN, Beriwal S, Pourarian RJ, Lalonde RJ, Chen A, Mehta K, et al. Clinical Implementation of Tangential Field Intensity Modulated Radiation Therapy (IMRT) Using Sliding Window Technique and Dosimetric Comparison with 3D Conformal Therapy (3DCRT) in Breast Cancer. Med Dosim. 2007;32(4):299-304. [DOI:10.1016/j.meddos.2007.03.001] [PMID]
16. Hardenbergh PH, Munley MT, Bentel GC, Kedem R, Borges-Neto S, Hollis D, et al. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: Preliminary results. Int J Radiat Oncol Biol Phys. 2001;49(4):1023-8. [DOI:10.1016/S0360-3016(00)01531-5] [PMID]
17. Nankali S, Zirak A, Poulsen PR. Investigation of the accuracy of deep inspiration breath hold left-sided breast cancer radiotherapy using a surface guiding system. J Nucl Sci Technol. 2020;92(2):166-77.
18. Blom Goldman U, Anderson M, Wennberg B, Lind P. Radiation pneumonitis and pulmonary function with lung dose-volume constraints in breast cancer irradiation. J Radiother Pract. 2014;13(2):211-7. [DOI:10.1017/S1460396913000228] [PMID] []
19. Adams MJ, Hardenbergh PH, Constine LS, Lipshultz E. Radiation-associated cardio v ascular disease. Crit Rev Oncol Hematol. 2003;45:55-75. [DOI:10.1016/S1040-8428(01)00227-X] [PMID]
20. Chen CH, Hsieh CC, Chang CS, Chen MF. A retrospective analysis of dose distribution and toxicity in patients with left breast cancer treated with adjuvant intensity-modulated radiotherapy: Comparison with three-dimensional conformal radiotherapy. Cancer Manag Res. 2020;12:9173-82. [DOI:10.2147/CMAR.S269893] [PMID] []
21. M. I. Jordan, T. M. Mitchell. Machine learning: Trends,perspectives, and prospects. Science. 2015;349(6245):255-60. [DOI:10.1126/science.aaa8415] [PMID]
22. Al-Hammad WE, Kuroda M, Kamizaki R, Tekiki N, Ishizaka H, Kuroda K, et al. Mean Heart Dose Prediction Using Parameters of Single-Slice Computed Tomography and Body Mass Index: Machine Learning Approach for Radiotherapy of Left-Sided Breast Cancer of Asian Patients. Curr Oncol. 2023;30(8): 7412-24. [DOI:10.3390/curroncol30080537] [PMID] []
23. Kamizaki R, Kuroda M, Al Hammad W, Tekiki N, Ishizaka H, Kuroda K, et al. Evaluation of the accuracy of heart dose prediction by machine learning for selecting patients not requiring deep inspiration breath hold radiotherapy after breast cancer surgery. Exp Ther Med. 2023;26(5):1-8. [DOI:10.3892/etm.2023.12235] [PMID] []
24. Kundrát P, Rennau H, Remmele J, Sebb S, Simonetto C, Kaiser JC, et al. Anatomy-dependent lung doses from 3D-conformal breast-cancer radiotherapy. Sci Rep [Internet]. 2022;12(1):1-9. [DOI:10.1038/s41598-022-14149-2] [PMID] []
25. Karlsen J, Tandstad T, Sowa P, Salvesen Ø, Stenehjem JS, Lundgren S, et al. Pneumonitis and fibrosis after breast cancer radiotherapy: occurrence and treatment-related predictors. Acta Oncol (Madr) [Internet]. 2021;60(12):1651-8. [DOI:10.1080/0284186X.2021.1976828] [PMID]
26. Goldman UB, Wennberg B, Svane G, Bylund H, Lind P. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5(1):1-6. [DOI:10.1186/1748-717X-5-99] [PMID] []
27. Jacob S, Pathak A, Franck D, Latorzeff I, Jimenez G, Fondard O, et al. Early detection and prediction of cardiotoxicity after radiation therapy for breast cancer: The BACCARAT prospective cohort study. Radiat Oncol [Internet]. 2016;11(1):1-10. [DOI:10.1186/s13014-016-0627-5] [PMID] []
28. Muttath G, Erakkotan GK, Jayaraj A, Cheruliyil Ayyappan S, Kumar. E.S A, Narayanan V, et al. Volumetric Estimation of Lung Dose and Its Association with Pneumonitis Following Radiotherapy in Breast Cancer Patients. Asian Pacific J Cancer Care. 2022;7(2):207-11. [DOI:10.31557/apjcc.2022.7.2.207-211]
29. Sorower M. A literature survey on algorithms for multi-label learning. Oregon State Univ Corvallis [Internet]. 2010; (October):1-25.
30. Jungjit S, Michaelis M, Freitas AA, Cinatl J. Extending multi-label feature selection with KEGG pathway information for microarray data analysis. 2014 IEEE Conf Comput Intell Bioinforma Comput Biol CIBCB 2014. 2014; [DOI:10.1109/CIBCB.2014.6845501]
31. Valdes G, Solberg TD, Heskel M. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol [Internet]. 2016;61:6105-20. [DOI:10.1088/0031-9155/61/16/6105] [PMID] []
32. Saadatmand P, Mahdavi SR, Nikoofar A, Jazaeri SZ, Ramandi FL, Esmaili G, et al. A dosiomics model for prediction of radiation-induced acute skin toxicity in breast cancer patients: machine learning-based study for a closed bore linac. Eur J Med Res [Internet]. 2024;29(1):282. [DOI:10.1186/s40001-024-01855-y] [PMID] []
33. DeCesaris CM, Pollock A, Zhang B, Poirier Y, Kowalski E, Paulosky K, et al. Assessing the Need for Adjusted Organ-at-Risk Planning Goals for Patients Undergoing Adjuvant Radiation Therapy for Locally Advanced Breast Cancer with Proton Radiation. Pract Radiat Oncol. 2021;11(2):108-18. [DOI:10.1016/j.prro.2020.09.003] [PMID]
34. Ueda Y, Gerber NK, Das IJ. Model-based cardiac dose estimation in radiation treatment of left breast cancer. Br J Radiol. 2018;91(1090). [DOI:10.1259/bjr.20180287] [PMID] []
35. Teimouri K, Khoshgard K. Investigating the Radiation Dose Received by the Heart and Its Electrocardiographic Changes after Three-dimensional Conformal Radiation Therapy in Patients with Left Breast Cancer. Avicenna J Clin Med. 2023;30(2): 72-80. [DOI:10.32592/ajcm.30.2.72] [PMID] []
36. Nielsen MH, Berg M, Pedersen AN, Andersen K, Glavicic V, Jakobsen EH, et al. Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: National guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group. Acta Oncol (Madr). 2013;52(4):703-10. [DOI:10.3109/0284186X.2013.765064] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

تمامی حقوق نرم‌افزاری اين وب سایت متعلق به مجله علمی بیماری‌های پستان ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb