1. Niell BL, Freer PE, Weinfurtner RJ, Arleo EK, Drukteinis JS. Screening for breast cancer. Radiologic Clinics. 2017;55(6): 1145-62. [
DOI:10.1016/j.rcl.2017.06.004] [
PMID]
2. Mohan SL, Dhamija E, Gauba R. Approach to Nonmass Lesions on Breast Ultrasound. Indian Journal of Radiology and Imaging. 2024. [
DOI:10.1055/s-0044-1779589] [
PMID] [
]
3. Tsunoda H, Moon WK. Beyond BI-RADS: Nonmass Abnormalities on Breast Ultrasound. Korean Journal of Radiology. 2024;25(2):134- 45. [
DOI:10.3348/kjr.2023.0769] [
PMID] [
]
4. Kuhl CK. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: rationale, concept, and transfer to clinical practice. Annual review of medicine. 2019;70:501-19. [
DOI:10.1146/annurev-med-121417-100403] [
PMID]
5. Ramadan GAAAAA. Digital Breast Tomosynthesis and Advanced Radiology Techniques: A Review of Their Role in Elderly Females with Breast Cancer. Asian Journal of Medical Principles and Clinical Practice. 2024;7(1):127-32.
6. Díaz O, Rodríguez-Ruíz A, Sechopoulos I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European journal of radiology. 2024:111457. [
DOI:10.1016/j.ejrad.2024.111457] [
PMID]
7. Wilkinson LS, Dunbar JK, Lip G. Clinical Integration of Artificial Intelligence for Breast Imaging. Radiologic Clinics. 2024; 62(4):703-16. [
DOI:10.1016/j.rcl.2023.12.006] [
PMID]
8. Tavakoli Taba S, Brennan PC, Lewis S. Dynamics of breast imaging research: A global scoping review and Sino-Australian comparison case study. Plos one. 2019; 14(1):e0210256. [
DOI:10.1371/journal.pone.0210256] [
PMID] [
]
9. Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, et al. Dedicated breast CT: State of the art-Part II. Clinical application and future outlook. European radiology. 2022; 32(4):2286-300. [
DOI:10.1007/s00330-021-08178-0] [
PMID]
10. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane database of systematic reviews. 2013(6):1-73. [
DOI:10.1002/14651858.CD001877.pub5] [
PMID] [
]
11. Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA. Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World journal of clinical oncology. 2014; 5(2):61-70. [
DOI:10.5306/wjco.v5.i2.61] [
PMID] [
]
12. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database of Systematic Reviews. 2013(6): CD001877. [
DOI:10.1002/14651858.CD001877.pub5] [
PMID] [
]
13. Lee SE, Yoon JH, Son N-H, Han K, Moon HJ. Screening in patients with dense breasts: comparison of mammography, artificial intelligence, and supplementary ultrasound. American Journal of Roentgenology. 2024; 222(1):e2329655. [
DOI:10.2214/AJR.23.29655] [
PMID]
14. Chong A, Weinstein SP, McDonald ES, Conant EF. Digital breast tomosynthesis: concepts and clinical practice. Radiology. 2019;292(1):1-14. [
DOI:10.1148/radiol.2019180760] [
PMID] [
]
15. Maimone S, Morozov AP, Letter HP, Robinson KA, Wasserman MC, Li Z, Maxwell RW. Abbreviated Molecular Breast Imaging: Feasibility and Future Considerations. Journal of Breast Imaging. 2022;4(6):590-9. [
DOI:10.1093/jbi/wbac060] [
PMID]
16. Keigley QJ, Fowler AM, O'Brien SR, Dehdashti F. Molecular imaging of steroid receptors in breast cancer. The Cancer Journal. 2024;30(3):142-52. [
DOI:10.1097/PPO.0000000000000715] [
PMID]
17. Lima ZS, Ebadi MR, Amjad G, Younesi L. Application of imaging technologies in breast cancer detection: a review article. Open Access Macedonian Journal of Medical Sciences. 2019;7(5):838-48. [
DOI:10.3889/oamjms.2019.171] [
PMID] [
]
18. Mann RM, Cho N, Moy L. Breast MRI: state of the art. Radiology. 2019;292(3):520-36. [
DOI:10.1148/radiol.2019182947] [
PMID]
19. Khairi SSM, Bakar MAA, Alias MA, Bakar SA, Liong C-Y, Rosli N, Farid M, editors. Deep learning on histopathology images for breast cancer classification: A bibliometric analysis. Healthcare; 2021: MDPI. [
DOI:10.3390/healthcare10010010] [
PMID] [
]
20. Hanis TM, Islam MA, Musa KI. Top 100 Most-Cited Publications on Breast Cancer and Machine Learning Research: A Bibliometric Analysis. Current medicinal chemistry. 2022;29(8):1426-35. [
DOI:10.2174/0929867328666211108110731] [
PMID]
21. Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. International Journal of Nanomedicine. 2018;13:2321. [
DOI:10.2147/IJN.S164355] [
PMID] [
]
22. Li Y, Wang X, Thomsen JB, Nahabedian MY, Ishii N, Rozen WM, et al. Research trends and performances of breast reconstruction: a bibliometric analysis. Annals of Translational Medicine. 2020; 8(22):1529. [
DOI:10.21037/atm-20-3476] [
PMID] [
]
23. Özen Çınar İ. Bibliometric analysis of breast cancer research in the period 2009-2018. International Journal of Nursing Practice. 2020;26(3):e12845. [
DOI:10.1111/ijn.12845] [
PMID]
24. Franco P, De Felice F, Jagsi R, Marta GN, Kaidar-Person O, Gabrys D, et al. Breast cancer radiation therapy: A bibliometric analysis of the scientific literature. Clinical and Translational Radiation Oncology. 2023;39:100556. [
DOI:10.1016/j.ctro.2022.11.015] [
PMID] [
]
25. Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. International Journal of Nanomedicine. 2018:2321-36. [
DOI:10.2147/IJN.S164355] [
PMID] [
]
26. Tan XJ, Cheor WL, Lim LL, Ab Rahman KS, Bakrin IH. Artificial intelligence (AI) in breast imaging: A scientometric umbrella review. Diagnostics. 2022;12(12):3111. [
DOI:10.3390/diagnostics12123111] [
PMID] [
]
27. Karger E, Kureljusic M. Artificial intelligence for cancer detection-a bibliometric analysis and avenues for future research. Current Oncology. 2023;30(2): 1626-47. [
DOI:10.3390/curroncol30020125] [
PMID] [
]