Write your message
Volume 17, Issue 4 (Iranian Journal of Breast Diseases 2025)                   ijbd 2025, 17(4): 4-31 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghalambaz S. A Scientometric Analysis of Four Decades of Scientific Production in Breast Imaging: Global Collaboration and Subject Areas. ijbd 2025; 17 (4) :4-31
URL: http://ijbd.ir/article-1-1116-en.html
Department of Knowledge and Information Science, Payame Noor University, Tehran, Iran , sepideh_ghalambaz@pnu.ac.ir
Abstract:   (383 Views)
Introduction: Breast imaging (BI) is crucial for the diagnosis of breast cancer and other breast-related diseases. With significant advancements in scientific research in this area, scientometric analyses have become key tools for evaluating the progress and impact of research. These analyses identify trends in the collaboration of countries, institutions, and leading journals over time.
Materials & Methods:  This study analyzed 12,462 articles related to the research topic from the Web of Science (WoS) database using scientometric methods. The citations, co-collaborations, h-index, first author, and corresponding authors were analyzed. Moreover, subject areas were examined based on the WoS categorization.
Results: Based on the findings obtained, the University of Pennsylvania, with 235 scientific publications and 6,611 citations, ranked 40th in the h-index and is a leader in BI research. The largest subject areas in this field are "Radiology," "Nuclear Medicine," and "Medical Imaging." The journals Medical Physics, Radiology, and Academic Radiology have the highest number of publications in this field, with the Radiology journal leading with 19,018 total citations.
Conclusion: Breast imaging research has seen remarkable growth, with the number of articles increasing from two in 1980 to 967 in 2022. Notable scientific collaborations have emerged, particularly in the United States, which has 867 joint publications with other countries, alongside regional collaboration patterns among European and Asian countries.
Full-Text [PDF 3290 kb]   (104 Downloads)    
Type of Study: Applicable | Subject: Diagnosis, treatment, rehabilitation
Received: 2024/06/18 | Accepted: 2024/08/4 | Published: 2024/12/27

References
1. Niell BL, Freer PE, Weinfurtner RJ, Arleo EK, Drukteinis JS. Screening for breast cancer. Radiologic Clinics. 2017;55(6): 1145-62. [DOI:10.1016/j.rcl.2017.06.004] [PMID]
2. Mohan SL, Dhamija E, Gauba R. Approach to Nonmass Lesions on Breast Ultrasound. Indian Journal of Radiology and Imaging. 2024. [DOI:10.1055/s-0044-1779589] [PMID] []
3. Tsunoda H, Moon WK. Beyond BI-RADS: Nonmass Abnormalities on Breast Ultrasound. Korean Journal of Radiology. 2024;25(2):134- 45. [DOI:10.3348/kjr.2023.0769] [PMID] []
4. Kuhl CK. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: rationale, concept, and transfer to clinical practice. Annual review of medicine. 2019;70:501-19. [DOI:10.1146/annurev-med-121417-100403] [PMID]
5. Ramadan GAAAAA. Digital Breast Tomosynthesis and Advanced Radiology Techniques: A Review of Their Role in Elderly Females with Breast Cancer. Asian Journal of Medical Principles and Clinical Practice. 2024;7(1):127-32.
6. Díaz O, Rodríguez-Ruíz A, Sechopoulos I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European journal of radiology. 2024:111457. [DOI:10.1016/j.ejrad.2024.111457] [PMID]
7. Wilkinson LS, Dunbar JK, Lip G. Clinical Integration of Artificial Intelligence for Breast Imaging. Radiologic Clinics. 2024; 62(4):703-16. [DOI:10.1016/j.rcl.2023.12.006] [PMID]
8. Tavakoli Taba S, Brennan PC, Lewis S. Dynamics of breast imaging research: A global scoping review and Sino-Australian comparison case study. Plos one. 2019; 14(1):e0210256. [DOI:10.1371/journal.pone.0210256] [PMID] []
9. Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, et al. Dedicated breast CT: State of the art-Part II. Clinical application and future outlook. European radiology. 2022; 32(4):2286-300. [DOI:10.1007/s00330-021-08178-0] [PMID]
10. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane database of systematic reviews. 2013(6):1-73. [DOI:10.1002/14651858.CD001877.pub5] [PMID] []
11. Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA. Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World journal of clinical oncology. 2014; 5(2):61-70. [DOI:10.5306/wjco.v5.i2.61] [PMID] []
12. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database of Systematic Reviews. 2013(6): CD001877. [DOI:10.1002/14651858.CD001877.pub5] [PMID] []
13. Lee SE, Yoon JH, Son N-H, Han K, Moon HJ. Screening in patients with dense breasts: comparison of mammography, artificial intelligence, and supplementary ultrasound. American Journal of Roentgenology. 2024; 222(1):e2329655. [DOI:10.2214/AJR.23.29655] [PMID]
14. Chong A, Weinstein SP, McDonald ES, Conant EF. Digital breast tomosynthesis: concepts and clinical practice. Radiology. 2019;292(1):1-14. [DOI:10.1148/radiol.2019180760] [PMID] []
15. Maimone S, Morozov AP, Letter HP, Robinson KA, Wasserman MC, Li Z, Maxwell RW. Abbreviated Molecular Breast Imaging: Feasibility and Future Considerations. Journal of Breast Imaging. 2022;4(6):590-9. [DOI:10.1093/jbi/wbac060] [PMID]
16. Keigley QJ, Fowler AM, O'Brien SR, Dehdashti F. Molecular imaging of steroid receptors in breast cancer. The Cancer Journal. 2024;30(3):142-52. [DOI:10.1097/PPO.0000000000000715] [PMID]
17. Lima ZS, Ebadi MR, Amjad G, Younesi L. Application of imaging technologies in breast cancer detection: a review article. Open Access Macedonian Journal of Medical Sciences. 2019;7(5):838-48. [DOI:10.3889/oamjms.2019.171] [PMID] []
18. Mann RM, Cho N, Moy L. Breast MRI: state of the art. Radiology. 2019;292(3):520-36. [DOI:10.1148/radiol.2019182947] [PMID]
19. Khairi SSM, Bakar MAA, Alias MA, Bakar SA, Liong C-Y, Rosli N, Farid M, editors. Deep learning on histopathology images for breast cancer classification: A bibliometric analysis. Healthcare; 2021: MDPI. [DOI:10.3390/healthcare10010010] [PMID] []
20. Hanis TM, Islam MA, Musa KI. Top 100 Most-Cited Publications on Breast Cancer and Machine Learning Research: A Bibliometric Analysis. Current medicinal chemistry. 2022;29(8):1426-35. [DOI:10.2174/0929867328666211108110731] [PMID]
21. Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. International Journal of Nanomedicine. 2018;13:2321. [DOI:10.2147/IJN.S164355] [PMID] []
22. Li Y, Wang X, Thomsen JB, Nahabedian MY, Ishii N, Rozen WM, et al. Research trends and performances of breast reconstruction: a bibliometric analysis. Annals of Translational Medicine. 2020; 8(22):1529. [DOI:10.21037/atm-20-3476] [PMID] []
23. Özen Çınar İ. Bibliometric analysis of breast cancer research in the period 2009-2018. International Journal of Nursing Practice. 2020;26(3):e12845. [DOI:10.1111/ijn.12845] [PMID]
24. Franco P, De Felice F, Jagsi R, Marta GN, Kaidar-Person O, Gabrys D, et al. Breast cancer radiation therapy: A bibliometric analysis of the scientific literature. Clinical and Translational Radiation Oncology. 2023;39:100556. [DOI:10.1016/j.ctro.2022.11.015] [PMID] []
25. Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. International Journal of Nanomedicine. 2018:2321-36. [DOI:10.2147/IJN.S164355] [PMID] []
26. Tan XJ, Cheor WL, Lim LL, Ab Rahman KS, Bakrin IH. Artificial intelligence (AI) in breast imaging: A scientometric umbrella review. Diagnostics. 2022;12(12):3111. [DOI:10.3390/diagnostics12123111] [PMID] []
27. Karger E, Kureljusic M. Artificial intelligence for cancer detection-a bibliometric analysis and avenues for future research. Current Oncology. 2023;30(2): 1626-47. [DOI:10.3390/curroncol30020125] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb