Write your message
Volume 18, Issue 2 (Iranian Journal of Breast Diseases 2025)                   ijbd 2025, 18(2): 4-23 | Back to browse issues page

Ethics code: IR.UMSHA.REC.1403.460

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarghani M, Ouchi A, Saniee N, Omidi Hedayat F. A Bibliometric Analysis of Iranian Research on the Application of Artificial Intelligence in Breast Cancer. ijbd 2025; 18 (2) :4-23
URL: http://ijbd.ir/article-1-1144-en.html
1- Document Center and Central Library, Medical Information Management, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Medical Library and Information Science, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran , aliochi061@gmail.com
3- Department of Medical Library and Information Sciences, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:   (594 Views)
Introduction: In recent decades, the application of Artificial Intelligence (AI) in various aspects of cancer diagnosis, treatment, and prognosis has shown great promise. The present study aimed to assess the performance of Iranian scientific publications concerning the use of AI in breast cancer through bibliometric methods.
Methods: The research encompasses all scientific productions of Iranian scholars focusing on the application of AI in breast cancer, indexed in the Web of Science Science Citation Index-Expanded (WOS SCIE) database without time limitation. Bibliometric analysis was performed using Excel (version 2019), BiblioShiny, and VOS Viewer software.
Results: A total of 213 documents were retrieved from 929 authors. The results demonstrated a sustained growth trend in document production, with a growth rate of 3.06%, beginning in 2001 (n=1). Original articles were the predominant type of publication, with only a few single-author papers. “Ali Abbasian Ardakani” and the “Islamic Azad University” emerged as the author and institution with the highest scientific output, while “Computers in Biology and Medicine” was identified as the leading journal in this field. The co-authorship map indicated that Iranian researchers primarily collaborated with colleagues from the United States and China. “Deep learning” and “transfer learning” were highlighted as trending topics. In addition, “breast cancer,” “machine learning,” and “deep learning” emerged as the most frequent keywords.
Conclusion: This study offers a comprehensive overview of AI-related research in the field of breast cancer in Iran. It holds significant potential to aid researchers, policymakers, and specialists in advancing AI research relevant to this field and understanding its possible impacts.
Full-Text [PDF 1229 kb]   (54 Downloads)    
Type of Study: Research | Subject: Health informatics
Received: 2024/10/12 | Accepted: 2025/01/28 | Published: 2025/07/1

References
1. Jalali FS, Keshavarz K, Seif M, Akrami M, Jafari A, Ravangard R. Economic burden of breast cancer: a case of Southern Iran. Cost Effectiveness and Resource Allocation. 2023;21(1):58. doi: 10.1186/s12962-023-00470-8 [DOI:10.1186/s12962-023-00470-8] [PMID] []
2. Syed AH, Khan T. Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis. Frontiers in Oncology. 2022;12:854927. doi: 10.3389/fonc.2022.854927 [DOI:10.3389/fonc.2022.854927] [PMID] []
3. Almansour NM. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Frontiers in Molecular Biosciences. 2022;9:836417. doi: 10.3389/fmolb.2022.836417 [DOI:10.3389/fmolb.2022.836417] [PMID] []
4. Lyu P-f, Wang Y, Meng Q-X, Fan P-m, Ma K, Xiao S, et al. Mapping intellectual structures and research hotspots in the application of artificial intelligence in cancer: A bibliometric analysis. Frontiers in Oncology. 2022;12:955668. doi: 10.3389/fonc.2022.955668 [DOI:10.3389/fonc.2022.955668] [PMID] []
5. Eghbal MJ, Ardakani ND, Asgary S. A scientometric study of PubMed-indexed endodontic articles: a comparison between Iran and other regional countries. Iranian endodontic journal. 2012;7(2):56. doi: 10.22037/iej.v7i2.3005
6. Yao Q, Chen K, Yao L, Lyu P-h, Yang T-a, Luo F, et al. Scientometric trends and knowledge maps of global health systems research. Health research policy and systems. 2014;12:1-20. doi: 10.1186/1478-4505-12-26 [DOI:10.1186/1478-4505-12-26] [PMID] []
7. Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial intelligence in health care: bibliometric analysis. Journal of Medical Internet Research. 2020;22(7):e18228. doi: 10.2196/18228 [DOI:10.2196/18228] [PMID] []
8. Karger E, Kureljusic M. Artificial intelligence for cancer detection-a bibliometric analysis and avenues for future research. Current Oncology. 2023;30(2):1626-47. doi: 10.3390/curroncol30020125 [DOI:10.3390/curroncol30020125] [PMID] []
9. Musa IH, Afolabi LO, Zamit I, Musa TH, Musa HH, Tassang A, et al. Artificial intelligence and machine learning in cancer research: a systematic and thematic analysis of the top 100 cited articles indexed in Scopus database. Cancer Control. 2022;29:10732748221095946. doi: 10.1177/10732748221095946 [DOI:10.1177/10732748221095946] [PMID] []
10. CheshmehSohrabi M, Shabani R, Shirdavani S. Tops and Trends in Iranian Cancer Research: A Bibliometric Analysis. Archives of Iranian Medicine. 2022;25(4):224-34. doi: 10.34172/aim.2022.38 [DOI:10.34172/aim.2022.38] [PMID] []
11. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424. doi: 10.3322/caac.21492 [DOI:10.3322/caac.21492] [PMID]
12. Mariotto AB, Robin Yabroff K, Shao Y, Feuer EJ, Brown ML. Projections of the cost of cancer care in the United States: 2010-2020. Journal of the National Cancer Institute. 2011;103(2):117-28. doi: 10.1093/jnci/djq495 [DOI:10.1093/jnci/djq495] [PMID] []
13. Biglu MH. Breast cancer in Iran: the trend of Iranian researchers' studies in MEDLINE database. Basic & Clinical Cancer Research. 2014;6(1):22-32. url: https://bccr.tums.ac.ir/index.php/bccrj/article/view/94
14. Sanaat Z, Dolatkhah R. Epidemiologic profile of breast cancer in Iran: A systematic review and meta-analysis. Clinical Epidemiology and Global Health. 2024:101537. doi: 10.1016/j.cegh.2024.101537 [DOI:10.1016/j.cegh.2024.101537]
15. Shah SM, Khan RA, Arif S, Sajid U. Artificial intelligence for breast cancer analysis: Trends & directions. Computers in Biology and Medicine. 2022;142:105221. doi: 10.1016/j.compbiomed.2022.105221 [DOI:10.1016/j.compbiomed.2022.105221] [PMID]
16. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. Journal of the American college of radiology. 2010;7(1):18-27. doi: 10.1016/j.jacr.2009.09.022 [DOI:10.1016/j.jacr.2009.09.022] [PMID]
17. Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih Y-CT, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. Jama. 2015;314(15):1599-614. doi: 10.1001/jama.2015.12783 [DOI:10.1001/jama.2015.12783] [PMID] []
18. Poortmans PM, Takanen S, Marta GN, Meattini I, Kaidar-Person O. Winter is over: the use of artificial intelligence to individualise radiation therapy for breast cancer. The Breast. 2020;49:194-200. doi: 10.1016/j.breast.2019.11.011 [DOI:10.1016/j.breast.2019.11.011] [PMID] []
19. Holmes J, Sacchi L, Bellazzi R. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334-8. doi: 10.1308/147870804290 [DOI:10.1308/147870804290] [PMID] []
20. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature biomedical engineering. 2018;2(10):719-31. doi: 10.1038/s41551-018-0305-z [DOI:10.1038/s41551-018-0305-z] [PMID]
21. Hamet P. Tremblay//J. Artificial intelligence in medicine Metabolism S. 2017;69. doi: 10.1016/j.metabol.2017.01.011 [DOI:10.1016/j.metabol.2017.01.011] [PMID]
22. Trivikram C, Samarpitha S, Madhavi K, Moses D. Evaluation of Hybrid Face and Voice Recognition Systems for Biometric Identification in Areas Requiring High Security. I-Manager's Journal of Pattern Recognition. 2017;4(3). doi: 10.26634/jpr.4.3.13885 [DOI:10.26634/jpr.4.3.13885]
23. de Kleijn M, Siebert M, Huggett S. Artificial Intelligence: How knowledge is created, transferred and used. 2017. url: https://researchcollaborations.elsevier.com/en/publications/artificial-intelligence-how-knowledge-is-created-transferred-and-
24. Espinoza Villavicencio H, Gamboa-Cruzado J, López-Goycochea J, Soto Soto L. The Role of Artificial Intelligence in the Diagnosis of Neoplastic Diseases: A Systematic and Bibliometric Review. International Journal of Online & Biomedical Engineering. 2024;20(4). doi: 10.3991/ijoe.v20i04.45429 [DOI:10.3991/ijoe.v20i04.45429]
25. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast. 2020;49:25-32. doi: 10.1016/j.breast.2019.10.001 [DOI:10.1016/j.breast.2019.10.001] [PMID] []
26. Shen Z, Hu J, Wu H, Chen Z, Wu W, Lin J, et al. Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study. Journal of Translational Medicine. 2022;20(1):409. doi: 10.1186/s12967-022-03615-0 [DOI:10.1186/s12967-022-03615-0] [PMID] []
27. Zhang Y, Yu C, Zhao F, Xu H, Zhu C, Li Y. Landscape of artificial intelligence in breast cancer (2000-2021): a bibliometric analysis. Frontiers in Bioscience-Landmark. 2022;27(8):224. doi: 10.31083/j.fbl2708224 [DOI:10.31083/j.fbl2708224] [PMID]
28. Liu Q, Zhang J, Bai Y. Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis. Frontiers in Oncology. 2023;13:1222426. doi: 10.3389/fonc.2023.1222426 [DOI:10.3389/fonc.2023.1222426] [PMID] []
29. Liu G, Zhao J, Tian G, Li S, Lu Y. Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis. Frontiers in Oncology. 2022;12:925924. doi: 10.3389/fonc.2022.925924 [DOI:10.3389/fonc.2022.925924] [PMID] []
30. Jimma BL. Artificial intelligence in healthcare: A bibliometric analysis. Telematics and Informatics Reports. 2023;9:100041. doi: 10.1016/j.teler.2023.100041 [DOI:10.1016/j.teler.2023.100041]
31. Ho Y-S, Ouchi A, Nemati-Anaraki L. Highly cited publication performance in the ophthalmology category in the Web of Science database: a bibliometric analysis. International Journal of Ophthalmology. 2023;16(7):1155. doi: 10.18240/ijo.2023.07.22 [DOI:10.18240/ijo.2023.07.22] [PMID] []
32. Verma S, Gustafsson A. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of business research. 2020;118:253-61. doi: 10.1016/j.jbusres.2020.06.057 [DOI:10.1016/j.jbusres.2020.06.057] [PMID] []
33. Durieux V, Gevenois PA. Bibliometric indicators: quality measurements of scientific publication. Radiology. 2010;255(2):342-51. doi: 10.1148/radiol.09090626 [DOI:10.1148/radiol.09090626] [PMID]
34. Zareivenovel M, Nemati-Anaraki L, Ouchi A, Nourizadeh M, Aghashahi M. Iranian Journal of Allergy, Asthma, and Immunology: A Bibliometric and Altmetric Analysis from 2005 to 2022. Iranian Journal of Allergy, Asthma and Immunology. 2024;23(1):29-51. doi: 10.18502/ijaai.v23i1.14952 [DOI:10.18502/ijaai.v23i1.14952] [PMID]
35. Gaur A, Kumar M. A systematic approach to conducting review studies: An assessment of content analysis in 25 years of IB research. Journal of World Business. 2018;53(2):280-9. doi: 10.1016/j.jwb.2017.11.003 [DOI:10.1016/j.jwb.2017.11.003]
36. Kaur V. Knowledge-based dynamic capabilities: a scientometric analysis of marriage between knowledge management and dynamic capabilities. Journal of Knowledge Management. 2022;27(4):919-52. doi: 10.1108/jkm-02-2022-0112 [DOI:10.1108/JKM-02-2022-0112]
37. Kaur V. Neurostrategy: A scientometric analysis of marriage between neuroscience and strategic management. Journal of Business Research. 2024;170:114342. doi: 10.1016/j.jbusres.2023.114342 [DOI:10.1016/j.jbusres.2023.114342]
38. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics. 2017;11(4):959-75. doi: 10.1016/j.joi.2017.08.007 [DOI:10.1016/j.joi.2017.08.007]
39. Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics. 2010;84(2):523-38. doi: 10.1007/s11192-009-0146-3 [DOI:10.1007/s11192-009-0146-3] [PMID] []
40. Abdolmaleki P, Buadu LD, Naderimansh H. Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett. 2001;171(2):183-91. doi: 10.1016/s0304-3835(01)00508-0 [DOI:10.1016/S0304-3835(01)00508-0] [PMID]
41. Ahmadlou M, Adeli H. Enhanced probabilistic neural network with local decision circles: A robust classifier. Integrated Computer-Aided Engineering. 2010;17:197-210. doi: 10.5555/1839615.1839621 [DOI:10.3233/ICA-2010-0345]
42. Rouhi R, Jafari M. Classification of benign and malignant breast tumors based on hybrid level set segmentation. Expert Systems with Applications. 2016;46:45-59. doi: 10.1016/j.eswa.2015.10.011 [DOI:10.1016/j.eswa.2015.10.011]
43. Eghbal MJ, Ardakani ND, Asgary SJIej. A scientometric study of PubMed-indexed endodontic articles: a comparison between Iran and other regional countries. 2012;7(2):56. doi: 10.22037/iej.v7i2.3005
44. Yao Qiang YQ, Chen Kai CK, Yao Lan YL, Lyu PengHui LP, Yang TianAn YT, Luo Fei LF, et al. Scientometric trends and knowledge map of global health systems research. 2014. doi: 10.1186/1478-4505-12-26 [DOI:10.1186/1478-4505-12-26] [PMID] []
45. Guo Y, Hao Z, Zhao S, Gong J, Yang FJJoMIR. Artificial intelligence in health care: bibliometric analysis. 2020;22(7):e18228. doi: 10.2196/18228 [DOI:10.2196/18228] [PMID] []
46. Karger E, Kureljusic MJCO. Artificial intelligence for cancer detection-a bibliometric analysis and avenues for future research. 2023;30(2):1626-47. doi: 10.3390/curroncol30020125 [DOI:10.3390/curroncol30020125] [PMID] []
47. Musa IH, Afolabi LO, Zamit I, Musa TH, Musa HH, Tassang A, et al. Artificial intelligence and machine learning in cancer research: a systematic and thematic analysis of the top 100 cited articles indexed in Scopus database. 2022;29:10732748221095946. doi: 10.1177/10732748221095946 [DOI:10.1177/10732748221095946] [PMID] []
48. Wu T, Duan Y, Zhang T, Tian W, Liu H, Deng Y. Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study. 2022;27(9). doi: 10.31083/j.fbl2709254 [DOI:10.31083/j.fbl2709254] [PMID]
49. CheshmehSohrabi M, Shabani R, Shirdavani SJAoIM. Tops and Trends in Iranian Cancer Research: A Bibliometric Analysis. 2022;25(4):224-34. doi: 10.34172/aim.2022.38 [DOI:10.34172/aim.2022.38] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb