Write your message
Volume 18, Issue 1 (Iranian Journal of Breast Diseases 2025)                   ijbd 2025, 18(1): 4-30 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghalambaz S. A Scientometric Analysis of Four Decades of Scientific Production in Breast Imaging: A Study of Keywords, Trends, and Research Support. ijbd 2025; 18 (1) :4-30
URL: http://ijbd.ir/article-1-1164-en.html
Department of Knowledge and Information Science, Payame Noor University, Tehran, Iran , s.ghalambaz@gmail.com
Abstract:   (548 Views)
Introduction: In recent years, significant advancements have been made in the field of breast imaging. The present study provides an overview of keywords and the participation trends of various countries in the field through scientometric analysis. Moreover, research funding from institutions in the field of breast imaging, as an important factor contributing to scientific progress, is also examined.
Methods: Relevant articles were extracted from the Web of Science database, and their data were analyzed using Python scripts to evaluate keyword trends and research support.
Results: The results indicated that research on breast imaging primarily focuses on the keywords “breast cancer” and “mammography,” while the use of “deep learning” has grown substantially since 2014. The National Institutes of Health (NIH) is at the forefront of funding these studies, and other organizations, such as the National Natural Science Foundation of China and the National Cancer Institute, also play significant roles. Other entities, including the World Health Organization and the Japan Cancer Research Institute, have also provided notable support.
Conclusion: Funding trends show that support from the NIH peaked in 2014, whereas the National Cancer Institute and the National Science Foundation exhibited varying patterns of funding. Internationally, the National Natural Science Foundation of China has significantly increased its support by 2022, and organizations such as the Korea National Research Foundation have taken a more active role. This reflects a growing global effort in breast imaging research. In recent years, the use of “deep learning” has risen significantly, underscoring an increasing interest in artificial intelligence and deep learning for breast imaging analysis.
Full-Text [PDF 7638 kb]   (144 Downloads)    
Type of Study: Research | Subject: Diagnosis, treatment, rehabilitation
Received: 2024/11/21 | Accepted: 2025/02/15 | Published: 2025/03/19

References
1. Khasseh AA, Zakiani S, Soheili F. Analysis of Iranian Breast Cancer Research: A Scientometric Study. Payavard Salamat. 2018;12(3):161-74. [Persian]
2. Ghaffari S, Gharebaghloo V, Bagheri E. Drawing the scientific communication network of Iranian researchers with other countries in the field of cancer. Scientometrics Research Journal. 2022;8(2, Autumn & Winter)):221-42. [Persian]
3. Biglu MH, Shahkhodabandeh S, Asadi M. Publications on Breast Neoplasms in Medline: AComparison between Iran and Other Middle East Countries. J Health Adm. 2012;9(1):119. [Persian]
4. Mousavi Chelak A, Riahi A, Haddad Araghi S. Evaluation of the science production trend of the Islamic Republic of Iran in the field of breast cancer at the global level (2000-2020). Hakim Research Journal. 2021;24(3):241-52. [Persian]
5. Akbari Neisiani S, Ehtesham H, Taghizad H, Daneshvar H. Position of scientific articles produced by the Cancer Institute of Tehran University of Medical Sciences in terms of weight: a scientometric study. Scientometrics Research Journal. 2021;7(1, spring & summer)):217-34. [Persian]
6. Díaz O, Rodríguez-Ruíz A, Sechopoulos I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European journal of radiology. 2024:111457. [DOI:10.1016/j.ejrad.2024.111457] [PMID]
7. Wilkinson LS, Dunbar JK, Lip G. Clinical Integration of Artificial Intelligence for Breast Imaging. Radiologic Clinics. 2024;62(4):703-16. [DOI:10.1016/j.rcl.2023.12.006] [PMID]
8. Lauritzen AD, Lillholm M, Lynge E, Nielsen M, Karssemeijer N, Vejborg I. Early indicators of the impact of using AI in mammography screening for breast cancer. Radiology. 2024;311(3):e232479. [DOI:10.1148/radiol.232479] [PMID]
9. Kinkar KK, Fields BK, Yamashita MW, Varghese BA. Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography. Frontiers in Radiology. 2024;3:1326831. [DOI:10.3389/fradi.2023.1326831] [PMID] []
10. Yoen H, Jang MJ, Yi A, Moon WK, Chang JM. Artificial Intelligence for Breast Cancer Detection on Mammography: Factors Related to Cancer Detection. Academic Radiology. 2024:2239-47. [DOI:10.1016/j.acra.2023.12.006] [PMID]
11. Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. Journal of Magnetic Resonance Imaging. 2020;51(5):1310-24. [DOI:10.1002/jmri.26878] [PMID]
12. Jiang Y, Edwards AV, Newstead GM. Artificial intelligence applied to breast MRI for improved diagnosis. Radiology. 2021;298(1):38-46. [DOI:10.1148/radiol.2020200292] [PMID]
13. Codari M, Schiaffino S, Sardanelli F, Trimboli RM. Artificial intelligence for breast MRI in 2008-2018: a systematic mapping review. American Journal of Roentgenology. 2019;212(2):280-92. [DOI:10.2214/AJR.18.20389] [PMID]
14. Sechopoulos I, Teuwen J, Mann R, editors. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology; 2021: Elsevier. [DOI:10.1016/j.semcancer.2020.06.002] [PMID]
15. Geras KJ, Mann RM, Moy L. Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future perspectives. Radiology. 2019;293(2):246-59. [DOI:10.1148/radiol.2019182627] [PMID] []
16. Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305-14. [DOI:10.1148/radiol.2018181371] [PMID]
17. Wu G-G, Zhou L-Q, Xu J-W, Wang J-Y, Wei Q, Deng Y-B, et al. Artificial intelligence in breast ultrasound. World Journal of Radiology. 2019;11(2):19. [DOI:10.4329/wjr.v11.i2.19] [PMID] []
18. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist. Medicine. 2019;98(3). [DOI:10.1097/MD.0000000000014146] [PMID] []
19. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nature Reviews Cancer. 2018;18(8):500-10. [DOI:10.1038/s41568-018-0016-5] [PMID] []
20. Ghalambaz S. A Scientometric Analysis of Four Decades of Scientific Production in Breast Imaging: Global Collaboration and Subject Areas. Iranian Journal of Breast Diseases. 2025;17(4):4-31. [Persian] [DOI:10.61186/ijbd.17.4.4]
21. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE transactions on medical imaging. 1999;18(8):712-21. [DOI:10.1109/42.796284] [PMID]
22. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiology Biomarkers & Prevention. 2006;15(6):1159-69. [DOI:10.1158/1055-9965.EPI-06-0034] [PMID]
23. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341-50. [DOI:10.1148/radiol.2391041676] [PMID]
24. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. Journal of the American college of radiology. 2017;14(5):587-95. [DOI:10.1016/j.jacr.2017.01.046] [PMID]
25. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J, editors. Mitosis detection in breast cancer histology images with deep neural networks. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16; 2013: Springer.
26. Warner E, Plewes DB, Hill KA, Causer PA, Zubovits JT, Jong RA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. Jama. 2004;292(11):1317-25. [DOI:10.1001/jama.292.11.1317] [PMID]
27. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval-and screen-detected cancers. Journal of the National Cancer Institute. 2000;92(13):1081-7. [DOI:10.1093/jnci/92.13.1081] [PMID]
28. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Opsahl-Ong B, et al. Digital tomosynthesis in breast imaging. Radiology. 1997;205(2):399-406. [DOI:10.1148/radiology.205.2.9356620] [PMID]
29. Fear EC, Li X, Hagness SC, Stuchly MA. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Transactions on biomedical engineering. 2002;49(8):812-22. [DOI:10.1109/TBME.2002.800759] [PMID]
30. Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435-49. [DOI:10.1148/radiol.11110640] [PMID]
31. Meaney PM, Fanning MW, Li D, Poplack SP, Paulsen KD. A clinical prototype for active microwave imaging of the breast. IEEE Transactions on Microwave Theory and Techniques. 2000;48(11):1841-53. [DOI:10.1109/22.883861]
32. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. Journal of the American college of radiology. 2010;7(1):18-27. [DOI:10.1016/j.jacr.2009.09.022] [PMID]
33. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, Dominguez M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. The Journal of Clinical Endocrinology & Metabolism. 2009;94(5):1748-51. [DOI:10.1210/jc.2008-1724] [PMID]
34. Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. Ieee transactions on biomedical engineering. 2015;63(7):1455-62. [DOI:10.1109/TBME.2015.2496264] [PMID]
35. Harms SE, Flamig DP, Hesley KL, Meiches MD, Jensen RA, Evans W, et al. MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology. 1993;187(2):493-501. [DOI:10.1148/radiology.187.2.8475297] [PMID]
36. Fobair P, Stewart SL, Chang S, D'Onofrio C, Banks PJ, Bloom JR. Body image and sexual problems in young women with breast cancer. Psycho‐Oncology: Journal of the Psychological, Social and Behavioral Dimensions of Cancer. 2006;15(7):579-94. [DOI:10.1002/pon.991] [PMID]
37. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE transactions on medical imaging. 2015;35(1):119-30. [DOI:10.1109/TMI.2015.2458702] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Breast Diseases

Designed & Developed by: Yektaweb