1. Khasseh AA, Zakiani S, Soheili F. Analysis of Iranian Breast Cancer Research: A Scientometric Study. Payavard Salamat. 2018;12(3):161-74. [Persian]
2. Ghaffari S, Gharebaghloo V, Bagheri E. Drawing the scientific communication network of Iranian researchers with other countries in the field of cancer. Scientometrics Research Journal. 2022;8(2, Autumn & Winter)):221-42. [Persian]
3. Biglu MH, Shahkhodabandeh S, Asadi M. Publications on Breast Neoplasms in Medline: AComparison between Iran and Other Middle East Countries. J Health Adm. 2012;9(1):119. [Persian]
4. Mousavi Chelak A, Riahi A, Haddad Araghi S. Evaluation of the science production trend of the Islamic Republic of Iran in the field of breast cancer at the global level (2000-2020). Hakim Research Journal. 2021;24(3):241-52. [Persian]
5. Akbari Neisiani S, Ehtesham H, Taghizad H, Daneshvar H. Position of scientific articles produced by the Cancer Institute of Tehran University of Medical Sciences in terms of weight: a scientometric study. Scientometrics Research Journal. 2021;7(1, spring & summer)):217-34. [Persian]
6. Díaz O, Rodríguez-Ruíz A, Sechopoulos I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European journal of radiology. 2024:111457. [
DOI:10.1016/j.ejrad.2024.111457] [
PMID]
7. Wilkinson LS, Dunbar JK, Lip G. Clinical Integration of Artificial Intelligence for Breast Imaging. Radiologic Clinics. 2024;62(4):703-16. [
DOI:10.1016/j.rcl.2023.12.006] [
PMID]
8. Lauritzen AD, Lillholm M, Lynge E, Nielsen M, Karssemeijer N, Vejborg I. Early indicators of the impact of using AI in mammography screening for breast cancer. Radiology. 2024;311(3):e232479. [
DOI:10.1148/radiol.232479] [
PMID]
9. Kinkar KK, Fields BK, Yamashita MW, Varghese BA. Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography. Frontiers in Radiology. 2024;3:1326831. [
DOI:10.3389/fradi.2023.1326831] [
PMID] [
]
10. Yoen H, Jang MJ, Yi A, Moon WK, Chang JM. Artificial Intelligence for Breast Cancer Detection on Mammography: Factors Related to Cancer Detection. Academic Radiology. 2024:2239-47. [
DOI:10.1016/j.acra.2023.12.006] [
PMID]
11. Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. Journal of Magnetic Resonance Imaging. 2020;51(5):1310-24. [
DOI:10.1002/jmri.26878] [
PMID]
12. Jiang Y, Edwards AV, Newstead GM. Artificial intelligence applied to breast MRI for improved diagnosis. Radiology. 2021;298(1):38-46. [
DOI:10.1148/radiol.2020200292] [
PMID]
13. Codari M, Schiaffino S, Sardanelli F, Trimboli RM. Artificial intelligence for breast MRI in 2008-2018: a systematic mapping review. American Journal of Roentgenology. 2019;212(2):280-92. [
DOI:10.2214/AJR.18.20389] [
PMID]
14. Sechopoulos I, Teuwen J, Mann R, editors. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology; 2021: Elsevier. [
DOI:10.1016/j.semcancer.2020.06.002] [
PMID]
15. Geras KJ, Mann RM, Moy L. Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future perspectives. Radiology. 2019;293(2):246-59. [
DOI:10.1148/radiol.2019182627] [
PMID] [
]
16. Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305-14. [
DOI:10.1148/radiol.2018181371] [
PMID]
17. Wu G-G, Zhou L-Q, Xu J-W, Wang J-Y, Wei Q, Deng Y-B, et al. Artificial intelligence in breast ultrasound. World Journal of Radiology. 2019;11(2):19. [
DOI:10.4329/wjr.v11.i2.19] [
PMID] [
]
18. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist. Medicine. 2019;98(3). [
DOI:10.1097/MD.0000000000014146] [
PMID] [
]
19. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nature Reviews Cancer. 2018;18(8):500-10. [
DOI:10.1038/s41568-018-0016-5] [
PMID] [
]
20. Ghalambaz S. A Scientometric Analysis of Four Decades of Scientific Production in Breast Imaging: Global Collaboration and Subject Areas. Iranian Journal of Breast Diseases. 2025;17(4):4-31. [Persian] [
DOI:10.61186/ijbd.17.4.4]
21. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE transactions on medical imaging. 1999;18(8):712-21. [
DOI:10.1109/42.796284] [
PMID]
22. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiology Biomarkers & Prevention. 2006;15(6):1159-69. [
DOI:10.1158/1055-9965.EPI-06-0034] [
PMID]
23. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341-50. [
DOI:10.1148/radiol.2391041676] [
PMID]
24. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. Journal of the American college of radiology. 2017;14(5):587-95. [
DOI:10.1016/j.jacr.2017.01.046] [
PMID]
25. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J, editors. Mitosis detection in breast cancer histology images with deep neural networks. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16; 2013: Springer.
26. Warner E, Plewes DB, Hill KA, Causer PA, Zubovits JT, Jong RA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. Jama. 2004;292(11):1317-25. [
DOI:10.1001/jama.292.11.1317] [
PMID]
27. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval-and screen-detected cancers. Journal of the National Cancer Institute. 2000;92(13):1081-7. [
DOI:10.1093/jnci/92.13.1081] [
PMID]
28. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Opsahl-Ong B, et al. Digital tomosynthesis in breast imaging. Radiology. 1997;205(2):399-406. [
DOI:10.1148/radiology.205.2.9356620] [
PMID]
29. Fear EC, Li X, Hagness SC, Stuchly MA. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Transactions on biomedical engineering. 2002;49(8):812-22. [
DOI:10.1109/TBME.2002.800759] [
PMID]
30. Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435-49. [
DOI:10.1148/radiol.11110640] [
PMID]
31. Meaney PM, Fanning MW, Li D, Poplack SP, Paulsen KD. A clinical prototype for active microwave imaging of the breast. IEEE Transactions on Microwave Theory and Techniques. 2000;48(11):1841-53. [
DOI:10.1109/22.883861]
32. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. Journal of the American college of radiology. 2010;7(1):18-27. [
DOI:10.1016/j.jacr.2009.09.022] [
PMID]
33. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, Dominguez M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. The Journal of Clinical Endocrinology & Metabolism. 2009;94(5):1748-51. [
DOI:10.1210/jc.2008-1724] [
PMID]
34. Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. Ieee transactions on biomedical engineering. 2015;63(7):1455-62. [
DOI:10.1109/TBME.2015.2496264] [
PMID]
35. Harms SE, Flamig DP, Hesley KL, Meiches MD, Jensen RA, Evans W, et al. MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology. 1993;187(2):493-501. [
DOI:10.1148/radiology.187.2.8475297] [
PMID]
36. Fobair P, Stewart SL, Chang S, D'Onofrio C, Banks PJ, Bloom JR. Body image and sexual problems in young women with breast cancer. Psycho‐Oncology: Journal of the Psychological, Social and Behavioral Dimensions of Cancer. 2006;15(7):579-94. [
DOI:10.1002/pon.991] [
PMID]
37. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE transactions on medical imaging. 2015;35(1):119-30. [
DOI:10.1109/TMI.2015.2458702] [
PMID] [
]