چکیده
مقدمه: سرطان پستان بهرغم انتشار گسترده، به کمک تصاویر ماموگرافی و علایم بالینی بیمار قابل شناسایی به موقع و معالجه قطعی است. حذف اختلالهای ناخواسته نظیر نویزها و بهبود کیفیت تصاویر ماموگرافی، در افزایش دقت تشخیص سرطان موثر میباشد. نویزهای ضربه در تصاویر ماموگرافی دیجیتال به گونهای است که در آن اختلاف شدت پیکسل نویزی با پیکسلهای اطراف زیاد است. وجود علایم و ویژگیهای مختلف این بیماری، تشخیص را برای پزشکان دشوار میکند. پردازش تصاویر ماموگرافی امکان تحلیل وضعیت بیماران برای تصمیمگیریهای پزشکی را فراهم میکند. هدف این مقاله، ارایه یک مدل برای حذف نویز ضربه از تصاویر ماموگرافی به منظور افزایش دقت پیشبینی سرطان پستان است.
روش بررسی: در این مطالعه، تصاویر ماموگرافی 574 بیمار مبتلا به سرطان پستان مورد بررسی قرار گرفته است. اطلاعات بیماران از پایگاه داده بیمارستان فوق تخصصی مرتاض یزد جمعآوری شده است. به منظور ارایه مدل برای حذف نویز ضربه از تصاویر ماموگرافی از الگوریتم GBC و شبکه عصبی MLP استفاده میشود.
یافتهها: مدل پیشنهادی با روشهایی از قبیل MDBUTMF و ATSM مورد مقایسه قرار گرفت. نتایج شبیهسازی برتری دقت تشخیص و حذف نویز ضربه از تصاویر ماموگرافی مدل پیشنهادی نسبت به سایر روشها را نشان میدهد. همچنین PSNR تصویر به طور متوسط dB2 افزایش مییابد.
نتیجهگیری: در حذف نویز ضربه به منظور پیشبینی سرطان پستان، مدل پیشنهادی نسبت به سایر مدلهای مورد مقایسه دارای حداقل میزان خطا و بیشترین دقت و صحت است. روش ATSM، حداکثر میزان خطا و کمترین دقت را دارا میباشد.
بازنشر اطلاعات | |
![]() |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |